

California State University, Sacramento

College of Engineering and Computer Science

Computer Science 130: Data Structures and Algorithm Analysis

Fall 2025 – Project #2 – Proper Stack & Queue

Overview

For this assignment, you are going to use your well-written Linked List to

create a nice, and efficient, Stack and Queue. Make sure to do a good job

on these classes, you will use them in a future assignment.

Part 1: Generic Key-Value Class

Before we continue, we need to make a simple modification to your Linked

List. This will include a new function to remove the item from the head.

But wait, the Node Class (which is hidden deep inside the LinkedList class)

is set to private. Are we going to make it public now? No. You never want to

expose the secret internal working of a data structure. So, we will use a

helper class.

This class won't have any functionality except to hold a couple pieces of

data. The class definition is below:

class KeyValue

 public String key

 public String value

end class

When you write this class, it should be in it's own .java file (or .cpp if you use C++).

2

Part 2: Modifying Your Node Class

Node Class - Modified

 Node(String) Constructor. You should split the string at the first colon and
use this to assign key and value.

 Node(String key, String value) NEW Constructor

Node Next The next node in the chain.

String Key Key value

String Value The value / description of the item.

Part 2: Modifying Your Linked List Class

Before you create your Stack and Queue, you need to make a simple modification to your LinkedList class. In particular, we

need to be able to remove from the head. Also, let's use your new KeyValue class.

Modify the following methods in your LinkedList Class. If the user passes in a string, we will split in at the colon automatically.

LinkedList Class – Modified Functions

void AddHead(String value) Split the string at the first colon. You can then create a new

KeyValue instance and call the AddHead(KeyValue) method.

void AddTail(String value) Split the string at the first colon. You can then create a new

KeyValue instance and call the AddTail(KeyValue) method.

String ToList() You will have to tweak this code slightly.

Add the following functions to your class.

LinkedList Class – NEW Functions

void AddHead(KeyValue item) It might be a good idea to modify your existing AddHead method().

void AddTail(KeyValue item) It might be a good idea to modify your existing AddTail method().

KeyValue RemoveHead() Removes a node from the head of the list and returns the two values

in a generic KeyValue instance.

I have the pseudocode listed below.

3

When you create your Stack and Queue, you want to keep the LinkedList class private (and hidden) from the client (the user of

your class). So, an instance of the LinkedList could be created inside both your Stack and Queue. Naturally, this should be

private.

Part 3: Your Stack & Queue

The Stack Class

The following is the interface (public functions) for the Stack Class. This will be fairly easy to write – since it wraps around your

LinkedList class. In other words, these functions merely call the appropriate function on the instance of the LinkedList. Don't

inherit.

class Stack

void Push(KeyValue item) Pushes a KeyValue onto the stack.

KeyValue Pop() Pops (removes) a KeyValue from the top of the stack.

boolean IsEmpty() Returns the value from the internal linked-list class.

String ToList() Return the string from the internal linked-list class.

The Queue Class

Like before, these functions should call the appropriate function on the private LinkedList instance. Don't inherit.

class Queue

void Enqueue(KeyValue item) Enqueues a string onto the queue.

KeyValue Dequeue() Dequeues (removes) a string from the front of the queue.

boolean IsEmpty() Returns the value from the internal linked-list class.

String ToList() Return the string from the internal linked-list class.

4

Part 4: Testing

File Format

A number of test files will be provided to you for testing your code. The format is designed to be easy to read in multiple

programming languages. You need to use the classes, built in your programming language, to read the source files.

Key: Value 1

Key: Value 2

...

Key: Value n

The following is one of the most basic test files on the website.

halloween calories.txt

73: M&M's Fun size

60: Tootsie Pop

40: Starburst Fun Size

70: Kit Kat Snack Size

30: Laffy Taffy

80: Snickers Fun Size

50: Nerds Mini Box

77: Hershey's Milk Chocolate Fun Size

82: Almond Joy Snack Size

How to Test

1. Read the input file into an instance of your Stack and Queue

2. Print them to the screen to verify they were loaded correctly.

3. Write a loop and dequeue KeyValue objects from the Queue and print them to the screen

4. Write a loop and pop all the KeyValue objects from the Stack and print them to the screen.

5. Afterwards, try manually adding a few KeyValues to the Queue and Stack see if you get pop/dequeue them

5

Allowed Programming Languages

You may use any of the following programming languages.

• C#

• C++ (not recommended)

• Java

The following cannot be used:

• C

• Groovy

• JavaScript

• Kotlin

• Lua

• Nim

• Python

• Ruby

• Scala

• Swift

• TypeScript

• Visual Basic .NET

Requirements

You must write your program yourself.

Do NOT use any built-in collection classes such as lists, arraylists, templates, etc…

If you use any of these, you will receive a zero. No exceptions. No resubmissions.

The following are the requirements for this assignment:

• This must be completely all your code. If you share your solution with another student or re-use code from another

class, you will receive a zero.

• Do not use any built-in Stack or Queue class (many programming languages provide them).

• You must encapsulate (i.e. make a private instance) of your LinkedList in both the Stack and Queue. Do not inherit.

• You must use your LinkedList from Project 1.

• You may use any of the programming languages listed below.

• Create some excellent testing for your class.

• Proper style (see below).

• Do not put your main() method inside the LinkedList class. This will cause major issues going forward.

6

Grading

1 New LinkedList functions 20%

2 The KeyValue class 15%

3 LinkedList class is encapsulated (private) in Stack and Queue 20%

4 Correct interface for Queue and Stack 10%

5 Proper output 10%

6 Proper Style 10%

7 Testing by Reading the File 15%

Due Date

Due October 17, 2025 by 11:59 pm.

Given you already have developed excellent programming skills in CSc 20, this shouldn't be a difficult assignment.

• Do not send it to canvas. I will not read nor grade Canvas e-mails.

• Do not send a cloud link. I cannot open cloud links.

E-Mail the following to dcook@csus.edu:

• The source code for the classes. Just send the source code files (.java, .cs, .cpp,, etc….)

The e-mail server will delete all attachments that have file extensions it deems dangerous. This

includes .jar, .exe, .class, and many more.

So, only send the following types of files:

• .txt

• .java

• .cs

• .cpp

• .h

Please send a ZIP File containing all your files.

7

Some Helpful Pseudocode

RemoveHead Pseudocode

function RemoveHead() returns KeyValue

 if the list is empty ... is head null?

 result = null ... We could also throw an error

 else if (this.head == this.tail) ... Just 1 node. Set head/tail to null

 result = new KeyValue using the head's values

 this.head = null ... Deference both

 this.tail = null

 else ... 2 or more nodes.

 result = new KeyValue using the head's values

 this.head = this.head next; ... Link new node to the current head

 end if

 return result

end function

