

California State University, Sacramento
College of Engineering and Computer Science

Computer Science 130: Data Structures and Algorithm Analysis

Spring 2024 – Project 3 – Binary Search Tree

Overview

For this assignment, you are to create a very basic Binary Search
Tree (BST). It will read data from a file – in fact, the same exact files
that you used in Project #2. Once loaded, your BST can print the tree
as both a sorted list and an ASCII-art tree.

You don't have to balance the tree. In fact, don't even try it yet.
Though, to be honest, a red-black tree (as long as you do the left-child
rotate trick when adding), isn't all that hard.

Part 1: Node Class

Interface

In recursively defined structures, like trees, all the coding (and
complexity) is found in the recursive structure itself. So, for this
assignment, all the logic will be found in the Node Class.

The Tree Class, which is defined in the handout below, merely starts
recursion on the root.

public class Node

 Node(int key, string value) Constructor.

Node left

Node right

int key The key to find the value.

string value The value that the node contains.

string toTree(String label, int indent) Returns a string of the tree’s structure. Please see below.

String toSortedList() Returns a string sorted by the key. Please see below.

void add(int key, string value) Adds the key to the correct position in the BST. If the key
already exists, do nothing.

string find(int key) Finds a node with the key and returns its value. If the
node is not found, you can return an empty string.

2

Pseudocode

Your Node class should be as follows:

class Node

 public int key

 public String value

 public Node left

 public Node right

 ... All your methods go here

end class

Adding to the Tree

To add a key, you will write a recursive method that will either recurse to the left or right – depending on the key. Whenever it
can no longer recurse left or right, a new node is simply added.

method add (int key, String value)

 if key < this node's key then

 if left is null

 create a new left child for this node.

 else

 left.add(key, value)

 end if

 end if

 if key > this node's key then

 if right is null

 create a right child for this node.

 else

 right.add(key, value)

 end if

 end if

end method

3

Creating the ASCII Tree

The method will recursively generate a string for the structure of the tree. One node will be displayed per line. In the examples
below, I'm using spaces followed by label that identifies each as either "L" for left and "R" for right. You can use spaces,
dashes, etc… You can use any size of indentation you like (2, 3, etc…).

Notice that the current node "this" is concatenated before the left and right recursive calls. This is an example of an preorder
depth-first traversal.

Function toTree(String label, int indent) returns a string

 Declare String result

 result += spaces for indent (2 or 3 times the indent)

 result += label + ": "

 result += this.key, this.value, and a newline

 if left isn’t null

 result += left.toTree("L", indent + 1)

 end if

 if right isn’t null

 result += right.toTree("R", indent + 1)

 end if

 return result

End Function

The following could be produced by this algorithm. Your version is can look a bit different if you wish, but you must indent your
lines and (somehow) indicate which is the left and right branch. Notice that this is the point of the label field.

-: (1947) Sacramento State

 L: (1869) Transcontinental Railroad

 L: (1848) Gold Rush Begins

 L: (1846) Bear Flag Revolt

 R: (1850) California joins the U.S.

 R: (1911) California Flag officially adopted

 R: (1976) Apple Founded

 L: (1968) Intel Founded

 R: (2003) Tesla Founded

4

Creating the Sorting list

The method will recursively generate a string and return the list is sorted order. It is quite easy to do.

Notice that the current node "this" is concatenated after the left recursive call and before right recursive call. This is an
example of an inorder depth-first traversal.

Function toSortedList() returns a string

 Declare String result

 if left isn’t null

 result += left.toSortedList()

 end if

 result += this.key, this.value, and a comma

 if right isn’t null

 result += right.toSortedList()

 end if

 return result

End Function

5

Part 2: BinarySearchTree Class

Interface

For this project, you are also to create a wrapper BinarySearchTree Class. In reality, this class doesn't do that much. The
class simply starts recursion of the root itself.

Naturally, there is some logic needed to handle an null root, but that is just a few basic if-statements.

public class BinarySearchTree

 BinarySearchTree() Constructor.

Node root Private

string about() Returns text about you – the author of this class.

string toTree() Returns a string of the tree’s structure.
It will start recursion from the root node with indent 0 and a label of
"Root".

String toSortedList() Returns a string sorted by the key. Please see below.
It will start recursion from the root node.

void add(int key, String value) Adds the key to the correct position in the BST. If the key already
exists, do nothing.

string find(int key) Finds a node with the key and returns the value. If the node is not
found, you can return an empty string.

Pseudocode

class BinarySearchTree

 private Node root

 ... All your methods go here.

end class

6

Part 3: Input File Format

A number of test files will be provided to you for testing your code. The format is designed to be easy to read in multiple
programming languages. You need to use the classes, built in your programming language, to read the source files.

File Format

The first line of the data contains the total digits in the key. You might want to save this value – I can be used to separate the
key from the value (using the substring function found in most programming languages).

Key 1

Value 1

Key 2

Value 2

...

Key n

Value n

0

END

The following is one of the most basic test files on the website.

File: california.txt

1947

Sacramento State

1976

Apple Founded

1869

Transcontinental Railroad

2003

Tesla Founded

1848

Gold Rush Begins

1911

California Flag officially adopted

1850

California joins the U.S.

1968

Intel Founded

0

END

7

Part 4: Testing

Once you have finished your code, you need to test it using some good test data. Now you can see why you wrote the ToTree
method. It is vital to verifying if your methods are working correctly.

For example, if the following file is added to the Binary Search Tree.

File: halloween calories.txt

73

M&M's Fun size

60

Tootsie Pop

40

Starburst Fun Size

70

Kit Kat Snack Size

30

Laffy Taffy

80

Snickers Fun Size

50

Nerds Mini Box

77

Hershey's Milk Chocolate Fun Size

82

Almond Joy Snack Size

0

END

It will result in the following tree.

-: (73) M&M's fun size

 L: (60) Tootsie Pop

 L: (40) Starburst Fun Size

 L: (30) Laffy Taffy

 R: (50) Nerds Mini Box

 R: (70) Kit Kat Snack Size

 R: (80) Snickers Fun Size

 L: (77) Hershey's Milk Chocolate Fun Size

 R: (82) Almond Joy Snack Size

8

Binary Search Trees are extremely sensitive to the order that data is fed into them. In fact, once node is added, it's position in
the tree will never change. In the example below, I've added the same entries, but I have switched the position of the first two.

File: halloween calories 2.txt

60

Tootsie Pop

73

M&M's Fun size

40

Starburst Fun Size

70

Kit Kat Snack Size

30

Laffy Taffy

80

Snickers Fun Size

50

Nerds Mini Box

77

Hershey's Milk Chocolate Fun Size

82

Almond Joy Snack Size

0

END

Observe that, this minor change of order, has had a profound impact on the structure of the tree. The first key added will
always become the root. And it will remain the root.

-: (60) Tootsie Pop

 L: (40) Starburst Fun Size

 L: (30) Laffy Taffy

 R: (50) Nerds Mini Box

 R: (73) M&M's fun size

 L: (70) Kit Kat Snack Size

 R: (80) Snickers Fun Size

 L: (77) Hershey's Milk Chocolate Fun Size

 R: (82) Almond Joy Snack Size

9

Assignment Rules

• This must be completely all your code. If you share your solution with another student or re-use code from another class,
you will receive a zero.

• You must use recursion in the Node class. The BinarySearchTree only starts recursion on the root.

• You may use any programming language you are comfortable with. I strongly recommend not using C (C++, Java, C#,
Visual Basic are all good choices).

Requirements

1 Correct use of recursion – it must happen in the Node class.

2 Correct interfaces

3 Correct toTree method. It must print something to denote left and right branches.

4 Correct toSortedList method. It must use recursion.

5 Correct add method. It must use recursion.

6 Correct find method. It must use recursion.

7 Proper Style

8 Reading from the test file.

Due Date

Due April 14, 2024 by 11:59 pm.

Given you did a good job on the Tree Evaluator, then this shouldn't be a difficult assignment. Do not send it to canvas. E-
Mail the following to dcook@csus.edu:

• The source code.

• The main program that runs the tests.

The e-mail server will delete all attachments that have file extensions it deems dangerous. This
includes .py, .exe, and many more.

So, please send a ZIP File containing all your files.

10

Proper Style

Well-formatted code

Points will be deducted if your program doesn't adhere to basic programming style guidelines. The requirements are below:

1. If programming C++, Java, or C#, I don't care where you put the starting curly bracket. Just be consistent.

2. Indentation must be used.

3. Indentation must be consistent. Three or four spaces works. Beware of the tab character. It might not appear
correctly on my computer (tabs are inconsistent in size).

4. Proper commenting. Not every line needs a comment, but sections that contain logic often do. Add a comment before
every section of code – such as a loop or If Statement. Any complex idea, such as setting a link, must have a
comment. Please see below:

5. You must adhere to one-way-in-one-way-out code. It is considered poor form to use return outside a final If-
Statement or Switch. Any project using a "dead return", as pictured below, will lose 50%.

return;

The following code is well formatted and commented.

void foo()

{

 int x;

 //Print off the list

 x = 0;

 while (x < this.count)

 {

 items.Add(this[x]); //Add the item to the temporary list

 x++;

 }

}

Poorly-formatted code

The following code is poor formatted and documented.

void foo()

{

 int x;

x = 0;

while (x < this.count) {

 items.Add(this[x]); //Call add on items.

 x++;

}

}

