
1

Queues &

Stacks in

Practice

Part 4

Queues &

Stacks in

Practice

1001 Uses!
(I meant 1,001 – not 9)

 HTML is a hierarchical

structure

 HTML consists of tags

• each tag can also embed other

tags

• allows text to be aligned, made

bold, etc…

HTML Tag Matching

Spring 2023 Sacramento State - Cook - CSc 130 3

 Web browsers read the text and apply a tag

depending if it is active

 They maintain a stack…

• push a start tag, pop and end tag

• if the HTML is correct, they should match

• … with the exception of the unary tags

HTML Tag Matching

Spring 2023 Sacramento State - Cook - CSc 130 4

HTML Tag Matching

Spring 2023 Sacramento State - Cook - CSc 130 5

<html>

<body>

<center>

<h1>Banks of Sacramento</h1>

</center>

<i>A bully ship and a bully crew.

Hoo-da! Hoo-da!

A bully mate and a captain too.

Hoo-da! Hoo-da-day!

And it's blow, ye winds, blow,

for Californi-o.

For there's plenty of gold,

so I've been told,

on the banks of the
Sacramento.</i>

</body>

</html>

Banks of Sacramento

A bully ship and a bully crew.

Hoo-da! Hoo-da!

A bully mate and a captain too.

Hoo-da! Hoo-da-day!

Then blow, ye winds, blow,

for Californi-o.

For there's plenty of gold,

so I've been told,

on the banks of the Sacramento.

 When analyzing arithmetic expressions…

• it is important to determine whether it is balanced with
respect to parentheses

• otherwise, the expression is incorrect

 A great solution is a stack

• push each (and pop each)

• at the end, the stack should be empty

• also, if you attempt to pop on an empty stack, the expression
is invalid

Spring 2023 Sacramento State - Cook - CSc 130 6

Balanced Parentheses

1 2

3 4

5 6

2

Balanced Parenthesis Examples

(a + b)

(a + b))

) a + b (

(a + (b + 1) * c) / e

Balanced

Pop empty stack

Pop empty stack

Balanced

(a * (b + ((d + e) * f)) Stack has 1 left

Spring 2023 Sacramento State - Cook - CSc 130 7

 But wait…

• can we just use a "parenthesis level" counter?

• if it is >= 1 at the end or if it ever is < 0, the expression is
invalid

 Sorry, it won't work…

• some expressions allow { } and []

• a simple counter is insufficient

• stack can check if the pop'd item matches

Balanced Parentheses

Spring 2023 Sacramento State - Cook - CSc 130 8

Balanced Parenthesis Examples

[a + b]

(a + b}

{[a + b }]

(a + (b + 1) * c / e

Balanced

Mismatch

Mismatch

Unbalanced

(a * [b + {c + d} * e]) Balanced

Spring 2023 Sacramento State - Cook - CSc 130 9

Evaluating

Expressions

A Stack and Queue working together!

 It is a common task in
programs to evaluate
mathematical expressions
and get a result

 Computers can perform this
task using an algorithm
created by Dijkstra, but we
will get into that later

Evaluating Expressions

Spring 2023 Sacramento State - Cook - CSc 130 11

 First, we need to look at

mathematical expressions

 We usually use infix notation

• not stack or queue "friendly"

• there are, however, two

alternative notations

• one of which is stack friendly

Evaluating Expressions

Spring 2023 Sacramento State - Cook - CSc 130 12

7 8

9 10

11 12

3

Infix Notation

Spring 2023 Sacramento State - Cook - CSc 130 13

 Using infix notation, we put the operator in

between the two operands

 This is the standard format used today

a + b

a / b

To add the numbers a and b, we type:

To divide a by b, we type:

Prefix Notation

Spring 2023 Sacramento State - Cook - CSc 130 14

 Prefix notation, rather than putting the operator between the
operands, puts it first

 It is also called "Polish Notation"

 Used by the LISP programming language

+ a b

/ a b

To add the numbers a and b, we type:

To divide a by b, we type:

Postfix Notation

Spring 2023 Sacramento State - Cook - CSc 130 15

 Postfix notation puts the operator at the end

 Also called "Reverse Polish Notation" (RPN)

 Since the operator is last, we can also use it as a "trigger" to
perform math

To add the numbers a and b, we type: a b +

To divide a by b, we type: a b /

Infix Prefix Postfix

a + b * c + a * b c a b c * +

(a - b) * c - a b * c a b – c *

(a / (b – c) + d) + / a - b c d a b c - / d +

(a + b / (c – d)) + a / b - c d a b c d - / +

Spring 2023 Sacramento State - Cook - CSc 130 16

Where are My Parenthesis?

 Infix is the only notation that

needs parentheses to

change precedence

 The order of operators

handles precedence in prefix
and postfix

Where are My Parenthesis?

Spring 2023 Sacramento State - Cook - CSc 130 17

 Computing a postfix expression
is easy

 All you need is:

• one queue that contains the
values & operators

• and one stack

 In fact, on classic Hewlett
Packard calculators, all
operations are stack based

Compute Postfix Algorithm

Spring 2023 Sacramento State - Cook - CSc 130 18

13 14

15 16

17 18

4

while there is data in the input queue

dequeue a token (value or operator)

if it's a value, push it on the stack

if it's an operator

pop two numbers from the stack

compute the result (using the operator)

push the result on the stack

end if

end while

...Afterwards, the final result is on the stack

Compute Postfix Pseudo-code

Spring 2023 Sacramento State - Cook - CSc 130 19

Compute Postfix Demo

24 10 -7 /

Stack

Input Queue +34

Spring 2023 Sacramento State - Cook - CSc 130 20

24 / (10 – 7) + 34

Compute Postfix Demo

24

10 -7 /

Stack

Input Queue +34

Spring 2023 Sacramento State - Cook - CSc 130 21

Compute Postfix Demo

24 10

-7 /

Stack

Input Queue +34

Spring 2023 Sacramento State - Cook - CSc 130 22

Compute Postfix Demo

24 10

-

7

/

Stack

Input Queue +34

Spring 2023 Sacramento State - Cook - CSc 130 23

3

Compute Postfix Demo

24

10 - 7

/

Stack

Input Queue +34

Spring 2023 Sacramento State - Cook - CSc 130 24

19 20

21 22

23 24

5

Compute Postfix Demo

24

/

Stack

Input Queue +34

Spring 2023 Sacramento State - Cook - CSc 130 25

3

24

Compute Postfix Demo

8/

Stack

Input Queue +34

Spring 2023 Sacramento State - Cook - CSc 130 26

3

Compute Postfix Demo

8Stack

Input Queue +34

Spring 2023 Sacramento State - Cook - CSc 130 27

Compute Postfix Demo

8Stack

Input Queue +

34

Spring 2023 Sacramento State - Cook - CSc 130 28

8 42

Compute Postfix Demo

Stack

Input Queue

+ 34

Spring 2023 Sacramento State - Cook - CSc 130 29

42

Compute Postfix Demo

Stack

Input Queue

Spring 2023 Sacramento State - Cook - CSc 130 30

25 26

27 28

29 30

6

 Why are learning this... be patient!

 Converting infix to either postfix or prefix notation is
easy to do by hand

 Did you notice that the operands did not change
order? They were always a, b, c…

 We just need to rearrange the operators

Converting to Prefix or Postfix

Spring 2023 Sacramento State - Cook - CSc 130 31

1. Make it a Fully Parenthesized Expression (FPE) -

one pair of parentheses enclosing each operator

and its operands

2. Move the operators to the start (prefix) or end

(postfix) of each sub-expression

3. Finally, remove all the parenthesis

Convert Infix to Prefix / Postfix

Spring 2023 Sacramento State - Cook - CSc 130 32

Infix to Postfix

a / (b - c) + d

((a / (b - c)) + d)1.

((a (b c -) /) d +)2.

a b c - / d +3.

Spring 2023 Sacramento State - Cook - CSc 130 33

Let the computer do the work…

Infix to Postfix

Algorithm

Edsger Dijkstra

Spring 2023 Sacramento State - Cook - CSc 130 35

 Edsger Dijkstra is a
World-famous computer
scientist

 He invented a wealth of
algorithms

 For his contributions, he
received the Turing
Award

 Infix expressions need to be

converted to postfix to be

evaluated

 Dijkstra's Shunting-yard

algorithm performs this task

Infix to Postfix Algorithm

Spring 2023 Sacramento State - Cook - CSc 130 36

31 32

33 34

35 36

7

Shunting-yard algorithm

Spring 2023 Sacramento State - Cook - CSc 130 37

 Named after railroad shunting

yards – which move trains

onto different tracks

 Dijkstra's solution uses an

input queue, operator stack,
and output queue

Shunting-yard Algorithm

Spring 2023 Sacramento State - Cook - CSc 130 38

Shunting-yard Algorithm

Spring 2023 Sacramento State - Cook - CSc 130 39

 The most basic version of this

algorithm requires Fully-

Parenthesized Expression

 This means, there is no

precedence and parenthesis
are put around every operator

while the input queue has tokens

read a token from the input queue

if the token is a…

operand : add it to output queue

operator : push it on the stack

'(' : push it onto the stack

')' :

while the top of stack isn't a '('

pop an operator

add it to the output queue

end while

pop and discard the extra '('

end if

end while

FPE Shunting-yard Algorithm

Spring 2023 Sacramento State - Cook - CSc 130 40

FPE Shunting-yard Algorithm

Operator Stack

Input Queue

Output Queue

((a * (b + c)) / d)

Spring 2023 Sacramento State - Cook - CSc 130 41

FPE Shunting-yard Algorithm

Operator Stack

Input Queue

Output Queue

Spring 2023 Sacramento State - Cook - CSc 130 42

*((a (+b c)) / d)

37 38

39 40

41 42

8

FPE Shunting-yard Algorithm

Operator Stack

Input Queue

Output Queue

Spring 2023 Sacramento State - Cook - CSc 130 43

*

(

(a (+b c)) / d)

FPE Shunting-yard Algorithm

Operator Stack

Input Queue

Output Queue

Spring 2023 Sacramento State - Cook - CSc 130 44

*

((

a (+b c)) / d)

FPE Shunting-yard Algorithm

Operator Stack

Input Queue

Output Queue

Spring 2023 Sacramento State - Cook - CSc 130 45

*

((

a

(+b c)) / d)

FPE Shunting-yard Algorithm

Operator Stack

Input Queue

Output Queue

Spring 2023 Sacramento State - Cook - CSc 130 46

*((

a

(+b c)) / d)

FPE Shunting-yard Algorithm

Operator Stack

Input Queue

Output Queue

Spring 2023 Sacramento State - Cook - CSc 130 47

*((

a

(

+b c)) / d)

FPE Shunting-yard Algorithm

Operator Stack

Input Queue

Output Queue

Spring 2023 Sacramento State - Cook - CSc 130 48

*((

a

(

+

b

c)) / d)

43 44

45 46

47 48

9

FPE Shunting-yard Algorithm

Operator Stack

Input Queue

Output Queue

Spring 2023 Sacramento State - Cook - CSc 130 49

*((

a

(+

b

c)) / d)

FPE Shunting-yard Algorithm

Operator Stack

Input Queue

Output Queue

Spring 2023 Sacramento State - Cook - CSc 130 50

*((

a

(+

b c

)) / d)

FPE Shunting-yard Algorithm

Operator Stack

Input Queue

Output Queue

Spring 2023 Sacramento State - Cook - CSc 130 51

*((

a

(+

b c

)

) / d)

FPE Shunting-yard Algorithm

Operator Stack

Input Queue

Output Queue

Spring 2023 Sacramento State - Cook - CSc 130 52

*((

a +b c

) / d)

FPE Shunting-yard Algorithm

Operator Stack

Input Queue

Output Queue

Spring 2023 Sacramento State - Cook - CSc 130 53

*((

a +b c

)

/ d)

FPE Shunting-yard Algorithm

Operator Stack

Input Queue

Output Queue

Spring 2023 Sacramento State - Cook - CSc 130 54

*

(

a +b c

/ d)

49 50

51 52

53 54

10

FPE Shunting-yard Algorithm

Operator Stack

Input Queue

Output Queue

Spring 2023 Sacramento State - Cook - CSc 130 55

*

(

a +b c

/

d)

FPE Shunting-yard Algorithm

Operator Stack

Input Queue

Output Queue

Spring 2023 Sacramento State - Cook - CSc 130 56

*

(

a +b c

/

d

)

FPE Shunting-yard Algorithm

Operator Stack

Input Queue

Output Queue

Spring 2023 Sacramento State - Cook - CSc 130 57

*

(

a +b c

/

d

)

FPE Shunting-yard Algorithm

Operator Stack

Input Queue

Output Queue

Spring 2023 Sacramento State - Cook - CSc 130 58

*a +b c /d

FPE Shunting-yard Algorithm

Operator Stack

Input Queue

Output Queue a b c + * d /

Spring 2023 Sacramento State - Cook - CSc 130 59

Too Many Paranthesis!

Spring 2023 Sacramento State - Cook - CSc 130 60

 FPE's are rarely used in real-

World examples

 In fact, we use precedence

rules to simplify expressions

 Fortunately, the algorithm can

be modified, very easily, to

handle precedence!

55 56

57 58

59 60

11

while the input queue has tokens

read a token from the input queue

if the token is a…

operand : add it to output queue

operator : new rules – see next slide

'(' : push it onto the stack

')' :

while the top of stack isn't a '('

pop an operator

add it to the output queue

end while

pop and discard the '('

end if

end while

Non-FPE Shunting-yard Algorithm

Spring 2023 Sacramento State - Cook - CSc 130 61

if operator is left-associative

while top of stack is ≥ operator and not a '('

pop the stack

add it to the output queue

end while

if operator is right-associative

while top of stack is > operator and not a '('

pop the stack

add it to the output queue

end while

push the operator onto the stack

Operator: New Rules

Spring 2023 Sacramento State - Cook - CSc 130 62

Operator Associatively

+ - * / Left

^ (exponent) Right

Spring 2023 Sacramento State - Cook - CSc 130 63

Operator Associatively Shunting-yard Algorithm Example 1

Operator Stack

Input Queue

Output Queue

a - b * c + d

Spring 2023 Sacramento State - Cook - CSc 130 64

Shunting-yard Algorithm Example 1

Operator Stack

Input Queue

Output Queue

Spring 2023 Sacramento State - Cook - CSc 130 65

-a *b c + d

Shunting-yard Algorithm Example 1

Operator Stack

Input Queue

Output Queue

Spring 2023 Sacramento State - Cook - CSc 130 66

-

a

*b c + d

61 62

63 64

65 66

12

Shunting-yard Algorithm Example 1

Operator Stack

Input Queue

Output Queue

Spring 2023 Sacramento State - Cook - CSc 130 67

-

a

*b c + d

Shunting-yard Algorithm Example 1

Operator Stack

Input Queue

Output Queue

Spring 2023 Sacramento State - Cook - CSc 130 68

-

a

*

b

c + d

Shunting-yard Algorithm Example 1

Operator Stack

Input Queue

Output Queue

Spring 2023 Sacramento State - Cook - CSc 130 69

-

a

*

b

c + d

Shunting-yard Algorithm Example 1

Operator Stack

Input Queue

Output Queue

Spring 2023 Sacramento State - Cook - CSc 130 70

-

a

*

b c

+ d

Shunting-yard Algorithm Example 1

Operator Stack

Input Queue

Output Queue

Spring 2023 Sacramento State - Cook - CSc 130 71

-

a

*

b c

+

d

The precedence of * -

are both ≥ than +

Shunting-yard Algorithm Example 1

Operator Stack

Input Queue

Output Queue

Spring 2023 Sacramento State - Cook - CSc 130 72

-a *b c

+

d

67 68

69 70

71 72

13

Shunting-yard Algorithm Example 1

Operator Stack

Input Queue

Output Queue

Spring 2023 Sacramento State - Cook - CSc 130 73

-a *b c

+

d

Remaining stack

items pop'd

Shunting-yard Algorithm Example 1

Operator Stack

Input Queue

Output Queue

Spring 2023 Sacramento State - Cook - CSc 130 74

-a *b c +d

Shunting-yard Algorithm Example 1

Operator Stack

Input Queue

Output Queue a b c * - d +

Spring 2023 Sacramento State - Cook - CSc 130 75

Shunting-yard Algorithm Example 2

Operator Stack

Input Queue

Output Queue

a + (b – c * d) / e - f

Spring 2023 Sacramento State - Cook - CSc 130 76

Shunting-yard Algorithm Example 2

Operator Stack

Input Queue

Output Queue

Spring 2023 Sacramento State - Cook - CSc 130 77

+a -b c * d() / e - f

Shunting-yard Algorithm Example 2

Operator Stack

Input Queue

Output Queue

Spring 2023 Sacramento State - Cook - CSc 130 78

+

a

-b c * d() / e - f

73 74

75 76

77 78

14

Shunting-yard Algorithm Example 2

Operator Stack

Input Queue

Output Queue

Spring 2023 Sacramento State - Cook - CSc 130 79

+

a

-b c * d() / e - f

Shunting-yard Algorithm Example 2

Operator Stack

Input Queue

Output Queue

Spring 2023 Sacramento State - Cook - CSc 130 80

+

a

-b c * d

(

) / e - f

Shunting-yard Algorithm Example 2

Operator Stack

Input Queue

Output Queue

Spring 2023 Sacramento State - Cook - CSc 130 81

+

a

-

b

c * d

(

) / e - f

Shunting-yard Algorithm Example 2

Operator Stack

Input Queue

Output Queue

Spring 2023 Sacramento State - Cook - CSc 130 82

+

a

-

b

c * d

(

) / e - f

Shunting-yard Algorithm Example 2

Operator Stack

Input Queue

Output Queue

Spring 2023 Sacramento State - Cook - CSc 130 83

+

a

-

b c

* d

(

) / e - f

Shunting-yard Algorithm Example 2

Operator Stack

Input Queue

Output Queue

Spring 2023 Sacramento State - Cook - CSc 130 84

+

a

-

b c

*

d

(

) / e - f

79 80

81 82

83 84

15

Shunting-yard Algorithm Example 2

Operator Stack

Input Queue

Output Queue

Spring 2023 Sacramento State - Cook - CSc 130 85

+

a

-

b c

*

d

(

) / e - f

Shunting-yard Algorithm Example 2

Operator Stack

Input Queue

Output Queue

Spring 2023 Sacramento State - Cook - CSc 130 86

+

a

-

b c

*

d

()

/ e - f

Shunting-yard Algorithm Example 2

Operator Stack

Input Queue

Output Queue

Spring 2023 Sacramento State - Cook - CSc 130 87

+

a -b c *d

/ e - f

Shunting-yard Algorithm Example 2

Operator Stack

Input Queue

Output Queue

Spring 2023 Sacramento State - Cook - CSc 130 88

+

a -b c *d

/

e - f

Shunting-yard Algorithm Example 2

Operator Stack

Input Queue

Output Queue

Spring 2023 Sacramento State - Cook - CSc 130 89

+

a -b c *d

/

e

- f

Shunting-yard Algorithm Example 2

Operator Stack

Input Queue

Output Queue

Spring 2023 Sacramento State - Cook - CSc 130 90

+

a -b c *d

/

e

-

f

+ / are both

≥ than -

85 86

87 88

89 90

16

Shunting-yard Algorithm Example 2

Operator Stack

Input Queue

Output Queue

Spring 2023 Sacramento State - Cook - CSc 130 91

+a -b c *d /e

-

f

Shunting-yard Algorithm Example 2

Operator Stack

Input Queue

Output Queue

Spring 2023 Sacramento State - Cook - CSc 130 92

+a -b c *d /e

-

f

Remaining stack

items pop'd

Shunting-yard Algorithm Example 2

Operator Stack

Input Queue

Output Queue

Spring 2023 Sacramento State - Cook - CSc 130 93

+a -b c *d /e -f

Shunting-yard Algorithm Example 2

Operator Stack

Input Queue

Output Queue a b c d * - e / + f -

Spring 2023 Sacramento State - Cook - CSc 130 94

Testing Our Result

a + (b - c * d) / e - f

((a + ((b - (c * d)) / e)) – f)1.

((a ((b (c d *) -) e /) +) f –)2.

a b c d * - e / + f –3.

Spring 2023 Sacramento State - Cook - CSc 130 95

91 92

93 94

95

