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Analysis of 

Algorithms

Part 1

Analysis of 

Algorithms

Looking at how well it works

 An algorithm is a sequence of 
unambiguous instructions that 
solves a problem

 Can be represented various 
forms – i.e. languages

 Each unique set of data fed 
into an algorithm specifies an 
instance of that algorithm

What is an Algorithm?
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 Algorithms must to analyzed to determine whether it 
should be used

 This field is called algorithmics

 How it is analyzed:

• correctness 

• unambiguity 

• effectiveness 

• finiteness/termination - does it in a finite amount of time
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Analysis of Algorithms

 Correctness means the algorithm obtains the 
required output with valid input

 In other words, does it do what it is supposed to do

 Proof of Correctness can be easy for some 
algorithms – and quite difficult for others

 Proof of Incorrectness is quiet easy – find one 
instance where it fails on valid input

Correctness
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 How good is the algorithm?

 Two major areas of interest:

• time efficiency defines how long the algorithm will take 

to complete

• space efficiency defines how much memory and 

resources will be needed

 … and how these react as the data set grows

Effectiveness
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 Knowing this, we can determine if there is a better 
algorithm

 Does there exist a better algorithm?

• better time complexity

• better space efficiency

 Efficiency is a HUGE part of creating professional 
programs

Effectiveness
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Is the algorithm good?

Determining 

Effectiveness

 Determining if an algorithm is 

efficient – and will work best 

to solve a problem – is vital

 Some algorithms may work 

incredibly well

 … and sometimes fail horribly

Determining Effectiveness
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 Moreover, some algorithms 

are sensitive to the type of 

data

 And two algorithms – which 
solve the same problem –
may act differently given a set 

of values

Determining Effectiveness
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 Given that computer 
programs are designed to be 
fast (and thus efficient), 
estimating how long an 
algorithm will take is useful

 What is the task, repeated by 
the algorithm, has the most 
impact on the time?

Time Complexity
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 The basic operation 

contributes the most towards 

the running time of the 
algorithm

 It is the task that is repeated 
(often in a loop) by the 

algorithm

Time Complexity

Spring 2024 Sacramento State - Cook - CSc 130 12

7 8

9 10

11 12



3

 We could time the basic 

operation and then estimate 

how many times its executed

 This will give a rough idea of 

the total runtime

Time Complexity
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Theoretical Analysis of Time Efficiency

T(n) ≈ copC(n)

Total execution time 

Cost: execution time of 

a basic operation

Number of times the basic 

operation executes
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number of items in the 

data set

 Empirical Analysis can be performed by 

observation

 Select a specific (typical) sample of inputs

 Then physical unit of time and / or count actual 
number of basic operation’s executions

 Analyze the data to estimate: T(n), Cop, and C(n)
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Empirical analysis of time efficiency

 Worst case: Cworst(n)

• maximum executions over a set of size n

• can be linear, quadratic, or even exponential!

• the worst case can be exceedingly rare

 Best case: Cbest(n) 

• minimum executions over a set of size n

• best case can also be exceedingly rare

Time Complexity Cases
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Time Complexity Cases
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 Average case: Cavg(n)

• execute with typical data… 

• …in other words, the type of 

data the algorithm will it 

normally encounter

• this is NOT the average of 

worst and best case

Order of Growth 

Uh, "O"

13 14

15 16

17 18



4

Order of Growth 
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 For some algorithms, 

efficiency depends on the 

form of input

 Sometimes, the order of data, 

or the type of data can 
drastically increase cost

 In the previous equation, 

notice that C(n) represents 

the total number of times the 
basic operation is executed

 But, how does C react to n?

Order of Growth 
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 We can analyze n as it 

approaches ∞

 Examples:

• how will it run on a computer 

that is twice as fast?

• how long does it take with twice 

the input?

Order of Growth 

Spring 2024 Sacramento State - Cook - CSc 130 21

 One property of functions that 
we are interested in its rate of 
growth

 Rate of growth doesn't simply 
mean the "slope" of the line 
associated with a function

 Instead, it is more like the 
curvature of the line

Order of Growth
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 There are several functions

 In increasing order of growth, they are:

• Constant ≈ 1

• Logarithmic ≈ log n

• Linear ≈ n

• Log Linear ≈ n log n

• Quadratic ≈ n2

• Exponential ≈ 2n

Several Growth Functions
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168421n = 

111111

43210log n

168421n

6424820n log n

256641641n2

40965126481n3

6553625616422n
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 Using the known growth rates…

• algorithms are classified using three notations

• these allows you to see, quickly, the 
advantages/disadvantages of an algorithm 

 Major notations:

• Big-O

• Big-Theta

• Big-Omega

Classifications
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MeaningNameNotation

class of functions f(n) that grow no 

faster than n
Big-OO ( n )

class of functions f(n) that grow at 

same rate as n
Big-ThetaΘ ( n )

class of functions f(n) that grow at least 

as fast as n
Big-OmegaΩ ( n )
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Order of Growth

 So, Big-O notation gives an 

upper bound on growth of an 

algorithm

 We will use Big-O almost 

exclusively rather than the 
other two 

Big-O
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Big-O
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 The following means that the growth rate of f(n) is 

no more than the growth rate of n

 This is one of the classifications mentioned earlier

f(n) is O(n)

 These classes make it is easy to…

• compare algorithms for efficiency

• making decisions on which algorithm to use

• determining the scalability of an algorithm

 So, if two algorithms are the same class…

• they have the same rate of growth 

• both are equally valid solutions

Why it is O-some!
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 Represents a constant algorithm

 It does not increase / decrease 
depending on the size of n

 Examples

• appending to a linked list 
(with an end pointer)

• array element access

• practically all simple statements

O(1)
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 Represents logarithmic 

growth

 These increase with n, but 

the rate of growth diminishes

 For example: for base 2 logs, 

the growth only increases by 

one each time n doubles

O(log n)
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 Searching for an item on a sorted array – (e.g. a 

binary search)

 Traversing a sorted tree

O(log n) Examples
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 Represents an algorithm that 
grows linearly with n

 Very common in 
programming – for iteration

 Examples: 

• finding an item in a linked list

• merging two sorted arrays 

O(n)
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 Represents an algorithm that 

has "log linear" growth

 These algorithms grow based 
on both n and n's log value

O(n log n)
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 Quick Sort

 Heap Sort

 Merge Sort

 Fourier transformation

O(n log n) Examples
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 Represents an algorithm that 

has "quadratic" growth

 These algorithms grow 

dramatically fast depending 

on the size of n

 Do NOT use for large 

values of n

O(n2)
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 Bubble Sort, Selection Sort, etc….

 matrix multiplication

 merging unsorted arrays

O(n2) Examples
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Growth: 1 to 10
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Growth: 1 to 100
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Growth: 1 to 1000
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Seconds needed (1 Microsecond Operation)

n O(log n) O(n) O(n log n) O(n2)

10 0.000003

100

1,000

10,000

100,000

1,000,000

10,000,000

0.000010 0.000033 0.000100

0.000007 0.000100 0.000664 0.010000

0.000010 0.001000 0.009966 1.000000

0.000013 0.010000 0.132877 100.000000

0.000017 0.100000 1.660964 2.8 hours

0.000020 1.000000 19.931569 11.6 days

0.000023 10.000000 232.534966 3.16 years
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Big-O Summary
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O(1)

O(log n)

O(n)

O(n log n)

O(n2)

O(2n)

O(wow!)

O(yeah!)

O(nice!)

O(kay!)

O(no!)

O(sh*t!)

Good

Bad
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Big-O Math

Time for a "Big-O" headache

 Any algorithm can be 
analyzed, and its 
complexity/growth can be 
written as a simple 
mathematical expression

 Asymptotic analysis of an 
algorithm determines the 
running time in big-O notation

Asymptotic Analysis
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1. Find the worst-case number 

of primitive operations 

executed as a function of the 
input size

2. Eliminate meaningless values 
once the base rate in found

Asymptotic Analysis
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• If we analyze an algorithm and find it executes 
12 * n – 1

• constant factors and lower-order terms dropped since 

they become meaningless for large values of n

• remember, this is a growth rate

• It will be O(n)

Example
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3000n + 7 → O(n)

2n5 + 3n3 + 5 → O(n5)

7n3 - 2n + 3 → O(n3)

Examples
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for(i = 0; i < 100; i++)  

{

total += values[i];

}

Test Your Might…

O(1)
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for(x = 0; x < array.size; x++)

{

sum += array[x];

}

for(x = 0; x < array.size; x++)  

{

sum -= array[x];

}

Test Your Might…
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O(n)

for (x = 0; x < array.size; x++)

{

for (y = 0; y < x; y++)  

{

sum += x - y;

}

}

Test Your Might…
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O(n2)

Towers of Hanoi

A Classic Stack Puzzle

 Towers of Hanoi is a famous 

puzzle created by 

mathematician Edouard 
Lucas in 1883

 It is based on a "legend" 

Towers of Hanoi
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The Puzzle
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 Consists of a collection of 

discs with unique diameters

 Each disc has a hole in the 

center used to place it on one 

of 3 different pegs

 Goal:

• starts with all the discs stacked on one peg

• goal is to move all the discs to another peg

 Gameplay:

• a disc cannot be placed onto a smaller disc

• only one disc can be moved at a time

The Puzzle

Spring 2024 Sacramento State - Cook - CSc 130 54

49 50

51 52

53 54



10

 Well, the legend was created along with the puzzle 

and expanded over time

 Basically, somewhere in a hidden place, priests 

are moving a stack of 64 discs

 The ancient prophecy states that when the entire 

stack is moved…the World ENDS!

The Legend
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Hanoi: 3 Discs
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Hanoi: 3 Discs
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Hanoi: 3 Discs
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Hanoi: 3 Discs

Spring 2024 Sacramento State - Cook - CSc 130 59

Hanoi: 3 Discs
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Hanoi: 3 Discs
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Hanoi: 3 Discs
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Hanoi: 3 Discs
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 An elegant solution is to use recursion 

 Since disks are move from each tower using LIFO, 
each tower can be represented as a stack 

 The "classic" recursive solution just shows what 
actions to take, it doesn't move any values… but 

you could modify it easily to.

Hanoi: Solution
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void hanoi(int disc, Stack from, Stack temp, Stack dest) 

{   

if (disc == 1) 

{

move(from, dest);  //base case

} 

else

{

hanoi(disc - 1, from, dest, temp);

move(from, dest);

hanoi(disc - 1, temp, from, dest);

}

}

Hanoi: in Java
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void hanoi(int disc, Stack from, Stack temp, Stack dest) 

{

if (disc == 1) 

{

System.out.println(disc + ": " + from + " to " + dest); 

} 

else 

{

hanoi(disc - 1, from, dest, temp);

System.out.println(disc + ": " + from + " to " + dest); 

hanoi(disc - 1, temp, from, dest);

}

}

Hanoi: Demo Version
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// Disc 1 is the *smallest* disc. 

// We start recursion with the BIGGEST disc.

void main() 

{

hanoi(3, 'A', 'B', 'C');

}

Hanoi: Demo Version
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1: A to C

2: A to B

1: C to B

3: A to C

1: B to A

2: B to C

1: A to C

Hanoi: Demo Output
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Hanoi: Time Complexity
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 The minimum number of 

moves required for a stack of 

N discs is is 2N-1

 So, the time complexity of the 

Towers of Hanoi puzzle is 
O(2n) - exponential!

69

 The "legend" states that the monks have to move 

64 discs… order of 264

 So…

• if they take one second to move each disc, it will take 

them 584,542,046,090 years!

• if a super-computer moves a disc once per 

microsecond, it still takes 584,542 years!

Hanoi: Is the World Ending?
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