
1

Analysis of

Algorithms

Part 1

Analysis of

Algorithms

Looking at how well it works

 An algorithm is a sequence of
unambiguous instructions that
solves a problem

 Can be represented various
forms – i.e. languages

 Each unique set of data fed
into an algorithm specifies an
instance of that algorithm

What is an Algorithm?

Spring 2024 Sacramento State - Cook - CSc 130 3

 Algorithms must to analyzed to determine whether it
should be used

 This field is called algorithmics

 How it is analyzed:

• correctness

• unambiguity

• effectiveness

• finiteness/termination - does it in a finite amount of time

Spring 2024 Sacramento State - Cook - CSc 130 4

Analysis of Algorithms

 Correctness means the algorithm obtains the
required output with valid input

 In other words, does it do what it is supposed to do

 Proof of Correctness can be easy for some
algorithms – and quite difficult for others

 Proof of Incorrectness is quiet easy – find one
instance where it fails on valid input

Correctness

Spring 2024 Sacramento State - Cook - CSc 130 5

 How good is the algorithm?

 Two major areas of interest:

• time efficiency defines how long the algorithm will take

to complete

• space efficiency defines how much memory and

resources will be needed

 … and how these react as the data set grows

Effectiveness

Spring 2024 Sacramento State - Cook - CSc 130 6

1 2

3 4

5 6

2

 Knowing this, we can determine if there is a better
algorithm

 Does there exist a better algorithm?

• better time complexity

• better space efficiency

 Efficiency is a HUGE part of creating professional
programs

Effectiveness

Spring 2024 Sacramento State - Cook - CSc 130 7

Is the algorithm good?

Determining

Effectiveness

 Determining if an algorithm is

efficient – and will work best

to solve a problem – is vital

 Some algorithms may work

incredibly well

 … and sometimes fail horribly

Determining Effectiveness

Spring 2024 Sacramento State - Cook - CSc 130 9

 Moreover, some algorithms

are sensitive to the type of

data

 And two algorithms – which
solve the same problem –
may act differently given a set

of values

Determining Effectiveness

Spring 2024 Sacramento State - Cook - CSc 130 10

 Given that computer
programs are designed to be
fast (and thus efficient),
estimating how long an
algorithm will take is useful

 What is the task, repeated by
the algorithm, has the most
impact on the time?

Time Complexity

Spring 2024 Sacramento State - Cook - CSc 130 11

 The basic operation

contributes the most towards

the running time of the
algorithm

 It is the task that is repeated
(often in a loop) by the

algorithm

Time Complexity

Spring 2024 Sacramento State - Cook - CSc 130 12

7 8

9 10

11 12

3

 We could time the basic

operation and then estimate

how many times its executed

 This will give a rough idea of

the total runtime

Time Complexity

Spring 2024 Sacramento State - Cook - CSc 130 13

Theoretical Analysis of Time Efficiency

T(n) ≈ copC(n)

Total execution time

Cost: execution time of

a basic operation

Number of times the basic

operation executes

Spring 2024 Sacramento State - Cook - CSc 130 14

number of items in the

data set

 Empirical Analysis can be performed by

observation

 Select a specific (typical) sample of inputs

 Then physical unit of time and / or count actual
number of basic operation’s executions

 Analyze the data to estimate: T(n), Cop, and C(n)

Spring 2024 Sacramento State - Cook - CSc 130 15

Empirical analysis of time efficiency

 Worst case: Cworst(n)

• maximum executions over a set of size n

• can be linear, quadratic, or even exponential!

• the worst case can be exceedingly rare

 Best case: Cbest(n)

• minimum executions over a set of size n

• best case can also be exceedingly rare

Time Complexity Cases

Spring 2024 Sacramento State - Cook - CSc 130 16

Time Complexity Cases

Spring 2024 Sacramento State - Cook - CSc 130 17

 Average case: Cavg(n)

• execute with typical data…

• …in other words, the type of

data the algorithm will it

normally encounter

• this is NOT the average of

worst and best case

Order of Growth

Uh, "O"

13 14

15 16

17 18

4

Order of Growth

Spring 2024 Sacramento State - Cook - CSc 130 19

 For some algorithms,

efficiency depends on the

form of input

 Sometimes, the order of data,

or the type of data can
drastically increase cost

 In the previous equation,

notice that C(n) represents

the total number of times the
basic operation is executed

 But, how does C react to n?

Order of Growth

Spring 2024 Sacramento State - Cook - CSc 130 20

 We can analyze n as it

approaches ∞

 Examples:

• how will it run on a computer

that is twice as fast?

• how long does it take with twice

the input?

Order of Growth

Spring 2024 Sacramento State - Cook - CSc 130 21

 One property of functions that
we are interested in its rate of
growth

 Rate of growth doesn't simply
mean the "slope" of the line
associated with a function

 Instead, it is more like the
curvature of the line

Order of Growth

Spring 2024 Sacramento State - Cook - CSc 130 22

 There are several functions

 In increasing order of growth, they are:

• Constant ≈ 1

• Logarithmic ≈ log n

• Linear ≈ n

• Log Linear ≈ n log n

• Quadratic ≈ n2

• Exponential ≈ 2n

Several Growth Functions

Spring 2024 Sacramento State - Cook - CSc 130 23

168421n =

111111

43210log n

168421n

6424820n log n

256641641n2

40965126481n3

6553625616422n

Spring 2024 Sacramento State - Cook - CSc 130 24

Growth Rates Compared

19 20

21 22

23 24

5

 Using the known growth rates…

• algorithms are classified using three notations

• these allows you to see, quickly, the
advantages/disadvantages of an algorithm

 Major notations:

• Big-O

• Big-Theta

• Big-Omega

Classifications

Spring 2024 Sacramento State - Cook - CSc 130 25

MeaningNameNotation

class of functions f(n) that grow no

faster than n
Big-OO (n)

class of functions f(n) that grow at

same rate as n
Big-ThetaΘ (n)

class of functions f(n) that grow at least

as fast as n
Big-OmegaΩ (n)

Spring 2024 Sacramento State - Cook - CSc 130 26

Order of Growth

 So, Big-O notation gives an

upper bound on growth of an

algorithm

 We will use Big-O almost

exclusively rather than the
other two

Big-O

Spring 2024 Sacramento State - Cook - CSc 130 27

Big-O

Spring 2024 Sacramento State - Cook - CSc 130 28

 The following means that the growth rate of f(n) is

no more than the growth rate of n

 This is one of the classifications mentioned earlier

f(n) is O(n)

 These classes make it is easy to…

• compare algorithms for efficiency

• making decisions on which algorithm to use

• determining the scalability of an algorithm

 So, if two algorithms are the same class…

• they have the same rate of growth

• both are equally valid solutions

Why it is O-some!

Spring 2024 Sacramento State - Cook - CSc 130 29

 Represents a constant algorithm

 It does not increase / decrease
depending on the size of n

 Examples

• appending to a linked list
(with an end pointer)

• array element access

• practically all simple statements

O(1)

Spring 2024 Sacramento State - Cook - CSc 130 30

25 26

27 28

29 30

6

 Represents logarithmic

growth

 These increase with n, but

the rate of growth diminishes

 For example: for base 2 logs,

the growth only increases by

one each time n doubles

O(log n)

Spring 2024 Sacramento State - Cook - CSc 130 31

 Searching for an item on a sorted array – (e.g. a

binary search)

 Traversing a sorted tree

O(log n) Examples

Spring 2024 Sacramento State - Cook - CSc 130 32

 Represents an algorithm that
grows linearly with n

 Very common in
programming – for iteration

 Examples:

• finding an item in a linked list

• merging two sorted arrays

O(n)

Spring 2024 Sacramento State - Cook - CSc 130 33

 Represents an algorithm that

has "log linear" growth

 These algorithms grow based
on both n and n's log value

O(n log n)

Spring 2024 Sacramento State - Cook - CSc 130 34

 Quick Sort

 Heap Sort

 Merge Sort

 Fourier transformation

O(n log n) Examples

Spring 2024 Sacramento State - Cook - CSc 130 35

 Represents an algorithm that

has "quadratic" growth

 These algorithms grow

dramatically fast depending

on the size of n

 Do NOT use for large

values of n

O(n2)

Spring 2024 Sacramento State - Cook - CSc 130 36

31 32

33 34

35 36

7

 Bubble Sort, Selection Sort, etc….

 matrix multiplication

 merging unsorted arrays

O(n2) Examples

Spring 2024 Sacramento State - Cook - CSc 130 37

Growth: 1 to 10

Spring 2024 Sacramento State - Cook - CSc 130 38

Growth: 1 to 100

Spring 2024 Sacramento State - Cook - CSc 130 39

Growth: 1 to 1000

Spring 2024 Sacramento State - Cook - CSc 130 40

Seconds needed (1 Microsecond Operation)

n O(log n) O(n) O(n log n) O(n2)

10 0.000003

100

1,000

10,000

100,000

1,000,000

10,000,000

0.000010 0.000033 0.000100

0.000007 0.000100 0.000664 0.010000

0.000010 0.001000 0.009966 1.000000

0.000013 0.010000 0.132877 100.000000

0.000017 0.100000 1.660964 2.8 hours

0.000020 1.000000 19.931569 11.6 days

0.000023 10.000000 232.534966 3.16 years

Spring 2024 Sacramento State - Cook - CSc 130 41

Big-O Summary

Spring 2024 Sacramento State - Cook - CSc 130 42

O(1)

O(log n)

O(n)

O(n log n)

O(n2)

O(2n)

O(wow!)

O(yeah!)

O(nice!)

O(kay!)

O(no!)

O(sh*t!)

Good

Bad

37 38

39 40

41 42

8

Big-O Math

Time for a "Big-O" headache

 Any algorithm can be
analyzed, and its
complexity/growth can be
written as a simple
mathematical expression

 Asymptotic analysis of an
algorithm determines the
running time in big-O notation

Asymptotic Analysis

Spring 2024 Sacramento State - Cook - CSc 130 44

1. Find the worst-case number

of primitive operations

executed as a function of the
input size

2. Eliminate meaningless values
once the base rate in found

Asymptotic Analysis

Spring 2024 Sacramento State - Cook - CSc 130 45

• If we analyze an algorithm and find it executes
12 * n – 1

• constant factors and lower-order terms dropped since

they become meaningless for large values of n

• remember, this is a growth rate

• It will be O(n)

Example

Spring 2024 Sacramento State - Cook - CSc 130 46

3000n + 7 → O(n)

2n5 + 3n3 + 5 → O(n5)

7n3 - 2n + 3 → O(n3)

Examples

Spring 2024 Sacramento State - Cook - CSc 130 47

for(i = 0; i < 100; i++)

{

total += values[i];

}

Test Your Might…

O(1)

Spring 2024 Sacramento State - Cook - CSc 130 48

43 44

45 46

47 48

9

for(x = 0; x < array.size; x++)

{

sum += array[x];

}

for(x = 0; x < array.size; x++)

{

sum -= array[x];

}

Test Your Might…

Spring 2024 Sacramento State - Cook - CSc 130 49

O(n)

for (x = 0; x < array.size; x++)

{

for (y = 0; y < x; y++)

{

sum += x - y;

}

}

Test Your Might…

Spring 2024 Sacramento State - Cook - CSc 130 50

O(n2)

Towers of Hanoi

A Classic Stack Puzzle

 Towers of Hanoi is a famous

puzzle created by

mathematician Edouard
Lucas in 1883

 It is based on a "legend"

Towers of Hanoi

Spring 2024 Sacramento State - Cook - CSc 130 52

The Puzzle

Spring 2024 Sacramento State - Cook - CSc 130 53

 Consists of a collection of

discs with unique diameters

 Each disc has a hole in the

center used to place it on one

of 3 different pegs

 Goal:

• starts with all the discs stacked on one peg

• goal is to move all the discs to another peg

 Gameplay:

• a disc cannot be placed onto a smaller disc

• only one disc can be moved at a time

The Puzzle

Spring 2024 Sacramento State - Cook - CSc 130 54

49 50

51 52

53 54

10

 Well, the legend was created along with the puzzle

and expanded over time

 Basically, somewhere in a hidden place, priests

are moving a stack of 64 discs

 The ancient prophecy states that when the entire

stack is moved…the World ENDS!

The Legend

Spring 2024 Sacramento State - Cook - CSc 130 55

Hanoi: 3 Discs

Spring 2024 Sacramento State - Cook - CSc 130 56

Hanoi: 3 Discs

Spring 2024 Sacramento State - Cook - CSc 130 57

Hanoi: 3 Discs

Spring 2024 Sacramento State - Cook - CSc 130 58

Hanoi: 3 Discs

Spring 2024 Sacramento State - Cook - CSc 130 59

Hanoi: 3 Discs

Spring 2024 Sacramento State - Cook - CSc 130 60

55 56

57 58

59 60

11

Hanoi: 3 Discs

Spring 2024 Sacramento State - Cook - CSc 130 61

Hanoi: 3 Discs

Spring 2024 Sacramento State - Cook - CSc 130 62

Hanoi: 3 Discs

Spring 2024 Sacramento State - Cook - CSc 130 63

 An elegant solution is to use recursion

 Since disks are move from each tower using LIFO,
each tower can be represented as a stack

 The "classic" recursive solution just shows what
actions to take, it doesn't move any values… but

you could modify it easily to.

Hanoi: Solution

64Spring 2024 Sacramento State - Cook - CSc 130 64

void hanoi(int disc, Stack from, Stack temp, Stack dest)

{

if (disc == 1)

{

move(from, dest); //base case

}

else

{

hanoi(disc - 1, from, dest, temp);

move(from, dest);

hanoi(disc - 1, temp, from, dest);

}

}

Hanoi: in Java

Spring 2024 Sacramento State - Cook - CSc 130 65

void hanoi(int disc, Stack from, Stack temp, Stack dest)

{

if (disc == 1)

{

System.out.println(disc + ": " + from + " to " + dest);

}

else

{

hanoi(disc - 1, from, dest, temp);

System.out.println(disc + ": " + from + " to " + dest);

hanoi(disc - 1, temp, from, dest);

}

}

Hanoi: Demo Version

Spring 2024 Sacramento State - Cook - CSc 130 66

61 62

63 64

65 66

12

// Disc 1 is the *smallest* disc.

// We start recursion with the BIGGEST disc.

void main()

{

hanoi(3, 'A', 'B', 'C');

}

Hanoi: Demo Version

Spring 2024 Sacramento State - Cook - CSc 130 67

1: A to C

2: A to B

1: C to B

3: A to C

1: B to A

2: B to C

1: A to C

Hanoi: Demo Output

Spring 2024 Sacramento State - Cook - CSc 130 68

Hanoi: Time Complexity

Spring 2024 Sacramento State - Cook - CSc 130 69

 The minimum number of

moves required for a stack of

N discs is is 2N-1

 So, the time complexity of the

Towers of Hanoi puzzle is
O(2n) - exponential!

69

 The "legend" states that the monks have to move

64 discs… order of 264

 So…

• if they take one second to move each disc, it will take

them 584,542,046,090 years!

• if a super-computer moves a disc once per

microsecond, it still takes 584,542 years!

Hanoi: Is the World Ending?

70Spring 2024 Sacramento State - Cook - CSc 130 70

67 68

69 70

