

What is an Algorithm? Analysis of Algorithms An *algorithm* is a sequence of Algorithms must to analyzed to determine whether it unambiguous instructions that should be used solves a problem This field is called *algorithmics* Can be represented various How it is analyzed: forms – i.e. languages correctness · unambiguity Each unique set of data fed into an algorithm specifies an · effectiveness instance of that algorithm · finiteness/termination - does it in a finite amount of time 3 4

2

Correctness

- Correctness means the algorithm obtains the required output with *valid* input
- In other words, does it do what it is supposed to do
- Proof of Correctness can be easy for some algorithms – and quite difficult for others
- Proof of Incorrectness is quiet easy find one instance where it fails on valid input

Effectiveness

- How good is the algorithm?
- Two major areas of interest:
 - *time efficiency* defines how long the algorithm will take to complete
 - space efficiency defines how much memory and resources will be needed
- ... and how these react as the data set grows

Sacramento State - Cook - CSc 130

Effectiveness

- Knowing this, we can determine if there is a better algorithm
- Does there exist a better algorithm?
 - · better time complexity
 - · better space efficiency
- Efficiency is a <u>HUGE</u> part of creating professional programs

Determining Effectiveness Determining Effectiveness Moreover, some algorithms Determining if an algorithm is are sensitive to the type of efficient - and will work best data to solve a problem - is vital And two algorithms - which Some algorithms may work solve the same problem incredibly well may act differently given a set ... and sometimes fail horribly of values 10

9

7

Time Complexity

- Given that computer programs are designed to be fast (and thus efficient), estimating how long an algorithm will take is useful
- What is the task, repeated by the algorithm, has the most impact on the time?

Time Complexity

- The basic operation contributes the most towards the running time of the algorithm
- It is the task that is repeated (often in a loop) by the algorithm

Time Complexity

- We could time the basic operation and then estimate how many times its executed
- · This will give a rough idea of the total runtime

Theoretical Analysis of Time Efficiency

13

Empirical analysis of time efficiency • Empirical Analysis can be performed by observation Select a specific (typical) sample of inputs Then physical unit of time and / or count actual number of basic operation's executions Analyze the data to <u>estimate</u>: T(n), C_{op}, and C(n) 15 16

Time Complexity Cases Worst case: C_{worst}(n) · maximum executions over a set of size n · can be linear, quadratic, or even exponential! • the worst case can be exceedingly rare Best case: C_{best}(n) · minimum executions over a set of size n best case can also be exceedingly rare

Order of Growth

- For some algorithms, efficiency depends on the form of input
- Sometimes, the order of data, or the type of data can drastically increase cost

19

Order of Growth

- In the previous equation, notice that C(n) represents the total number of times the basic operation is executed
- But, how does C react to n?

20

Several Growth Functions

- There are several functions
- In increasing order of growth, they are:
 - Constant ≈ 1
 - Logarithmic ≈ log n
 - Linear ≈ n
 - Log Linear ≈ n log n
 - Quadratic $\approx n^2$
 - Exponential ≈ 2ⁿ

Growth Rates Compared

			4	8	
1	1	1	1	1	1
log n	0	1	2	3	4
n	1	2	4	8	16
n log n	0	2	8	24	64
n²	1	4	16	64	256
n ³	1	8	64	512	4096
2 ⁿ	2	4	16	256	65536

Classifications

- Using the known growth rates...
 - · algorithms are classified using three notations
 - these allows you to see, quickly, the advantages/disadvantages of an algorithm
- Major notations:
 - Big-O
 - Big-Theta
 - Big-Omega

25

Order of Growth

		Wicarning
O (<i>n</i>)	Big-O	class of functions f(n) that grow <u>no</u> faster than n
Θ(n)	Big-Theta	class of functions f(n) that grow at same rate as n
Ω(n)	Big-Omega	class of functions f(n) that grow <u>at least</u> as fast as n

26

27

Big-O

- The following means that the growth rate of f(n) is no more than the growth rate of n
- This is one of the classifications mentioned earlier

28

Why it is O-some!

- These classes make it is easy to...
 - · compare algorithms for efficiency
 - · making decisions on which algorithm to use
 - · determining the scalability of an algorithm
- So, if two algorithms are the same class...
 - · they have the same rate of growth
 - · both are equally valid solutions

O(1)

- Represents a constant algorithm
- It does not increase / decrease depending on the size of n

f(n) is O(n)

- Examples
 - appending to a linked list (with an end pointer)
 - · array element access
 - · practically all simple statements

O(log n)

- Represents logarithmic growth
- These increase with n, but the rate of growth diminishes
- For example: for base 2 logs, the growth only increases by one each time n doubles

31

32

33

O(n log n) Examples

- Quick Sort
- Heap Sort
- Merge Sort
- Fourier transformation

O(n²)

- Represents an algorithm that has "quadratic" growth
- These algorithms grow dramatically fast depending on the size of n
- Do <u>NOT</u> use for large values of n

See	conds nee	eded (1 <u>N</u>	<u>licro</u> secor	nd Operat	ion)
	n	O(log n)	O(n)	O(n log n)	O(n ²)
	10	0.000003	0.000010	0.000033	0.000100
ĺ	100	0.00007	0.000100	0.000664	0.010000
	1,000	0.000010	0.001000	0.009966	1.000000
	10,000	0.000013	0.010000	0.132877	100.000000
	100,000	0.000017	0.100000	1.660964	2.8 hours
	1,000,000	0.000020	1.000000	19.931569	11.6 days
	10,000,000	0.000023	10.000000	232.534966	3.16 years
Spring 2024			Sacramento State - Cook - CSc 130		

Any algorithm can be analyzed, and its complexity/growth can be written as a simple mathematical expression Asymptotic analysis of an algorithm determines the running time in big-O notation

Test Your Might	
<pre>for (x = 0; x < array.size; x++) { for (y = 0; y < x; y++) { sum += x - y; } }</pre>	
Spring 2024 Sacramenio State - Cook - CSc 130	50

- · starts with all the discs stacked on one peg
- · goal is to move all the discs to another peg
- · a disc cannot be placed onto a smaller disc
- only one disc can be moved at a time

The Legend

- Well, the legend was created along with the puzzle and expanded over time
- Basically, somewhere in a *hidden place*, priests are moving a stack of 64 discs
- The ancient prophecy states that when the entire stack is moved...the World *ENDS!*

55

Hanoi: 3 Discs

Hanoi: Solution

- An elegant solution is to use recursion
- Since disks are move from each tower using LIFO, each tower can be represented as a stack
- The "classic" recursive solution just shows what actions to take, it doesn't move any values... but you could modify it easily to.

1: A to C	
2: A to B	
1: C to B	
3: A to C	
1: B to A	
2: B to C	
1: A to C	

