
1

Linked List

Data Structure

Part 2 Return to CSC 15 and CSC 20

Data Structures

Data Structures

Spring 2024 Sacramento State - Cook - CSc 130 3

 Arrays and linked-lists are
both examples of data
structures

 These are different
techniques of storing and
organizing data

 In other words, this is how
data is stored

 Depending on how data is

accessed, some data

structures can either excel
and falter

 This is true of both arrays and
linked lists

Data Structures

Spring 2024 Sacramento State - Cook - CSc 130 4

 We will do a quick review of

arrays and linked lists

 There are more data

structures than these two

 We will cover them this

semester – some which have

incredible in features

Data Structures

Spring 2024 Sacramento State - Cook - CSc 130 5

Array Data

Structure

Hidden math = easy code

1 2

3 4

5 6

2

 The array data structure is

found in practically every

programming language

 This is also one of the

fundamental ways data is
stored in memory

Array Data Structure

Spring 2024 Sacramento State - Cook - CSc 130 7

 Arrays are just continuous

blocks of memory containing

multiple instances of the
same type

 Since the instances are
continuous, values can be

accessed randomly in O(1)

Behind the Scenes…

Spring 2024 Sacramento State - Cook - CSc 130 8

Array Math Example: 64-bit int

Spring 2024 Sacramento State - Cook - CSc 130 9

 Let's assume the array

starts at address 2000

 Each array element

will take 8 bytes (for

64-bit integers)

 Array elements are

stored continuous

446576696E20436F2000

6F6B0000000000002008

53616372616D656E2016

746F2053746174652024

43534333350000002032

Array Math Example: 64-bit int

Spring 2024 Sacramento State - Cook - CSc 130 10

 array[0] is 2000

 array[1] is 2008

 array[2] is 2016

 array[3] is 2024

 array[4] is 2032

 etc…

446576696E20436F2000

6F6B0000000000002008

53616372616D656E2016

746F2053746174652024

43534333350000002032

start + (index × element_size)

Behind the Scenes…

 So, when an array element is read, internally, a
mathematical equation is used

 It uses the start array, the array index, and the size of
each element

Spring 2024 Sacramento State - Cook - CSc 130 11

Behind the Scenes…

 This is why the C Programming Language uses zero
as the first array element

 If zero is used with this formula, it gets the start of the
array

start + (index × element_size)

Spring 2024 Sacramento State - Cook - CSc 130 12

7 8

9 10

11 12

3

 Also, because elements are

calculated, there is no extra

storage overhead based on
the array size

 So, the auxiliary storage
overhead is O(1)

Auxiliary Storage in arrays

Spring 2024 Sacramento State - Cook - CSc 130 13

 A dynamically allocated array

(aka dynamic array) is

resized anytime an object is
added or removed

 Because arrays require all
elements to be stored

continuously…

Resizing Arrays

Spring 2024 Sacramento State - Cook - CSc 130 14

 …the old block of memory

(old array) needs to be copied

to a new one

 This is extremely costly in

both time and resources

Resizing Arrays

Spring 2024 Sacramento State - Cook - CSc 130 15

Arrays in Memory

New blockCurrent block

Current array

Already being used

or other data

Spring 2024 Sacramento State - Cook - CSc 130 16

0

1

2

3

4

5

0

1

2

3

4

5

6

7

8

0

1

2

3

4

5

Copy Values to New Block

Copy

New element

here

Spring 2024 Sacramento State - Cook - CSc 130 17

Current block

0

1

2

3

4

5

6

7

8

New block

 While reading / writing

elements takes only O(1)…

 … every time an array is

resized, it will require O(n)

time to copy the old array to
the new one

Resizing Arrays is O(n)

Spring 2024 Sacramento State - Cook - CSc 130 18

13 14

15 16

17 18

4

 Arrays can also have a fixed
sized called a capacity

 The array is never resized
and often only partially filled

 Also known as:

• fixed array

• partially filled array

Fixed-Sized Arrays

Spring 2024 Sacramento State - Cook - CSc 130 19

 An "end" index is maintained

 This type of array overcomes
the O(n) nature of dynamic
arrays

 But a cost – it has a limit that

cannot be exceeded

Fixed-Sized Arrays

Spring 2024 Sacramento State - Cook - CSc 130 20

Fixed-Size Array

Spring 2024 Sacramento State - Cook - CSc 130 21

0 1 2 3 4 5 6 7 8 9

End

 Sometimes, you might need

an array that wraps

 These are useful if both the

first and last items can be

removed

 … or older items can be

discarded if space is needed

Fixed-Size Wrapping Around

Spring 2024 Sacramento State - Cook - CSc 130 22

 In addition to a "end" index, a

"start" index is maintained

 Once the end of the array is

reached, the array "wraps" to

index 0

 … and continues until end is

reached

Fixed-Size Wrapping Around

Spring 2024 Sacramento State - Cook - CSc 130 23

Fixed-Size Array

Spring 2024 Sacramento State - Cook - CSc 130 24

Can wrap around

0 1 2 3 4 5 6 7 8 9

StartEnd

19 20

21 22

23 24

5

Linked Lists

Chain of Data

Linked Lists

Spring 2024 Sacramento State - Cook - CSc 130 26

 The array (and the ArrayList)

are just two, of many, ways of

storing a collection

 Linked lists uses a series of

"linked" instances to store a
collection

 Since a variable can contain either an instance

reference or null, we can something quite clever

 An instance can contain a reference to another

instance – of the same class

 This creates a chain of connected instances.

 It ends when the "link" is null

How Does It Work?

Spring 2024 Sacramento State - Cook - CSc 130 27

class Book

{

public String name;

public Book sequel;

}

How Does That Work?

A reference to another Book instance

Spring 2024 Sacramento State - Cook - CSc 130 28

Chain of Books

Spring 2024 Sacramento State - Cook - CSc 130 29

sequel

The Fellowship of

the Ring

name sequel

The Two Towers

name sequel

Return of the King

name

null

Chain of Instances

Spring 2024 Sacramento State - Cook - CSc 130 30

 Notice that the last example

is essentially storing Strings

 Can we store other things?

 Yes! This is very simple
approach to store any type of

data

25 26

27 28

29 30

6

Chain of Instances

Spring 2024 Sacramento State - Cook - CSc 130 31

 Each link in our chain, that

stores a piece of information,

is called a Node

 The definition of a Node is

extremely simple: data and a
link to the next node

public class Node

{

public Object data;

public Node next;

}

Generic Node Class

Spring 2024 Sacramento State - Cook - CSc 130 32

We can make this
another type

Node list = new Node();

list.data = "rat";

list.next = new Node();

list.next.data = "owl";

list.next.next = new Node();

list.next.next.data = "cat";

list.next.next.next = null;

Creating a List (not well, though)

Spring 2024 Sacramento State - Cook - CSc 130 33

public Node(Object initData, Node initNext)

{

this.data = initData;

this.next = initNext;

}

public Node(Object initData)

{

this.data = initData;

this.next = null;

}

Constructors Will Help

Spring 2024 Sacramento State - Cook - CSc 130 34

Constructors Do Help

Spring 2024 Sacramento State - Cook - CSc 130 35

Node list = new Node("Rat", new Node("Owl", new Node("Cat")));

 Constructors do help

 Though it is still a tad hard to read

Node rat = new Node("Rat");

Node owl = new Node("Owl");

Node cat = new Node("Cat");

rat.next = owl;

owl.next = cat;

We Could Also Do This…

Spring 2024 Sacramento State - Cook - CSc 130 36

31 32

33 34

35 36

7

Traversing a

Linked List

Chain of Data

Traversing a Linked List

Spring 2024 Sacramento State - Cook - CSc 130 38

 Unlike arrays, where the

element can be found using a

calculation, linked-lists
require the list to be traversed

 This is typically done using a
while loop and variable

representing the current node

public class Node

{

public int data;

public Node next;

}

Node for Integers

Spring 2024 Sacramento State - Cook - CSc 130 39

Let's use int's
for now

Let's Try This List

Spring 2024 Sacramento State - Cook - CSc 130 40

next

1930

data next

1947

data next

1964

data

null

next

1953

data

head

current = head;

while (current != null)

{

System.out.println(current.data);

current = current.next; //Go to next node

}

While Loop – Follow the Links

Spring 2024 Sacramento State - Cook - CSc 130 41

Traversing the List

Spring 2024 Sacramento State - Cook - CSc 130 42

next

1930

data next

1947

data next

1964

data

null

next

1953

data

head

37 38

39 40

41 42

8

Traversing the List

Spring 2024 Sacramento State - Cook - CSc 130 43

next

1930

data next

1947

data next

1964

data

null

next

1953

data

head

Traversing the List

Spring 2024 Sacramento State - Cook - CSc 130 44

next

1930

data next

1947

data next

1964

data

null

next

1953

data

head

Traversing the List

Spring 2024 Sacramento State - Cook - CSc 130 45

next

1930

data next

1947

data next

1964

data

null

next

1953

data

head

Adding to

Linked Lists

Chain of Data

Adding to Linked Lists

Spring 2024 Sacramento State - Cook - CSc 130 47

 Adding to Linked Lists is easy

to do, but must done with

considerable care

 The links (references) need to

be updated in a specific order

 … or a link will be lost

Adding to Linked Lists

Spring 2024 Sacramento State - Cook - CSc 130 48

 The first item in a linked list is

referred to as the Head

(alternatively Front)

 The last item, in which the

next field is null, is called the
Tail

43 44

45 46

47 48

9

Adding to Linked Lists

Spring 2024 Sacramento State - Cook - CSc 130 49

 In this section, we will add a

new node to the front, middle,

and end of a linked list

 Most of these actions require

just two steps

Let’s Assume We Have This List

Spring 2024 Sacramento State - Cook - CSc 130 50

next

1930

name next

1947

name next

1964

name

null

Adding to the Tail of a List

Spring 2024 Sacramento State - Cook - CSc 130 51

1. Link the tail node (who's next

field is null) to the newly

added node

2. If a reference to the tail is

being maintained, it is linked
to the newly added node

Add Tail: 1. Link Tail to the New Node

Spring 2024 Sacramento State - Cook - CSc 130 52

next

1930

data next

1947

data next

1964

data

null

next

1953

data

null

head

Add Tail: Resulting List

Spring 2024 Sacramento State - Cook - CSc 130 53

next

1930

data next

1947

data next

1964

data next

1953

data

nullhead

// add is the new node

// tail is the last node in the list

tail.next = add;

Adding to the Tail of a List

Spring 2024 Sacramento State - Cook - CSc 130 54

49 50

51 52

53 54

10

Adding to the Head of a List

Spring 2024 Sacramento State - Cook - CSc 130 55

1. The newly added node is

linked to the head of the list

2. The head is then linked to the
newly added node

Adding to the Head of a List

Spring 2024 Sacramento State - Cook - CSc 130 56

next

1930

data next

1947

data next

1964

data

null

next

1953

data

null

head

Add Head: 1. Link Node to Head's Reference

Spring 2024 Sacramento State - Cook - CSc 130 57

next

1930

data next

1947

data next

1964

data

null

next

1953

data

null

head

Add Head: 2. Set Head Reference to the Node

Spring 2024 Sacramento State - Cook - CSc 130 58

next

1930

data next

1947

data next

1964

data

null

next

1953

data

null

head

Add Head: 2. Set Head Reference to the Node

Spring 2024 Sacramento State - Cook - CSc 130 59

next

1930

data next

1947

data next

1964

data

null

next

1953

data

head

Add Head: Resulting List

Spring 2024 Sacramento State - Cook - CSc 130 60

next

1930

data next

1947

data next

1964

data

null

next

1953

data

head

55 56

57 58

59 60

11

// add is the new node

// head is the first node in the list

add.next = head;

head = add;

Adding to the Head of a List

Spring 2024 Sacramento State - Cook - CSc 130 61

Adding to the Middle of a List

Spring 2024 Sacramento State - Cook - CSc 130 62

1. The new node is linked to

target of the previous node

(before where we want to
insert)

2. The previous node is then
linked to the new node

Adding to the Middle of a List

Spring 2024 Sacramento State - Cook - CSc 130 63

next

1930

data next

1947

data next

1964

data

null

next

1953

data

null

head

Add Middle: 1. Link Node to Next

Spring 2024 Sacramento State - Cook - CSc 130 64

next

1930

data next

1947

data next

1964

data

null

next

1953

data

null

head

Add Middle: 2. Link Previous to the Node

Spring 2024 Sacramento State - Cook - CSc 130 65

next

1930

data next

1947

data next

1964

data

null

next

1953

data

null

head

Add Middle: 2. Link Previous to the Node

Spring 2024 Sacramento State - Cook - CSc 130 66

next

1930

data next

1947

data next

1964

data

null

next

1953

data

null

head

61 62

63 64

65 66

12

Add Middle: Resulting List

Spring 2024 Sacramento State - Cook - CSc 130 67

next

1930

data next

1947

data next

1964

data

null

next

1953

data

head

// add is the new node

// prev is the node before where

// add is to be inserted

add.next = prev.ext;

prev.next = add;

Adding to the Middle of a List

Spring 2024 Sacramento State - Cook - CSc 130 68

Removing The Head Node

Spring 2024 Sacramento State - Cook - CSc 130 69

1. Save Link to the Old Head

2. Update the Head Reference
to the Head's next link

3. Remove the link from the old
head to the new head

Remove Head: 1. Save Link to the Old Head

Spring 2024 Sacramento State - Cook - CSc 130 70

next

1930

data next

1947

data next

1964

data

null

next

1953

data

head

result

Remove Head: 2. Update the Head Reference

Spring 2024 Sacramento State - Cook - CSc 130 71

next

1930

data next

1947

data next

1964

data

null

next

1953

data

head

result

Remove Head: 2. Update the Head Reference

Spring 2024 Sacramento State - Cook - CSc 130 72

next

1930

data next

1947

data next

1964

data

null

next

1953

data

head

result

67 68

69 70

71 72

13

Remove Head: 3. Remove the Link

Spring 2024 Sacramento State - Cook - CSc 130 73

next

1930

data

null

next

1947

data next

1964

data

null

next

1953

data

head

result

Remove Head: Complete

Spring 2024 Sacramento State - Cook - CSc 130 74

next

1930

data

null

next

1947

data next

1964

data

null

next

1953

data

head

result

// Save a reference to the head

result = head;

//Set head to the head's next link

head = head.next;

//Remove link between old head and new head

result.next = null;

Remove Head

Spring 2024 Sacramento State - Cook - CSc 130 75

Exactly the

same as a
singly linked list

One should keep track the caboose

Maintaining

a Tail Node

Head and Tail Nodes

Spring 2024 Sacramento State - Cook - CSc 130 77

 Linked lists maintain a link to

the head node

 Often, in well-written linked
lists, a link to the tail node is

also maintained

 It is far more efficient

Adding to the End

Spring 2024 Sacramento State - Cook - CSc 130 78

next

1930

data next

1947

data

null

next

1953

data

head

Current Node

73 74

75 76

77 78

14

Adding to the End

Spring 2024 Sacramento State - Cook - CSc 130 79

next

1930

data next

1947

data

null

next

1953

data

head

Current Node

Adding to the End

Spring 2024 Sacramento State - Cook - CSc 130 80

next

1930

data next

1947

data

null

next

1953

data

head

Current Node

Found the last node

in the list.
next == null

Adding to the End

Spring 2024 Sacramento State - Cook - CSc 130 81

next

1930

data next

1947

data

null

next

1953

data

head

Current Node
The new node is

added

next

1964

data

null

current = head;

while (current.next != null)

{

current = current.next; //Go to next node

}

// Current is now the tail. Link tail to new node

current.next = add;

While Loop – Follow the Links

Spring 2024 Sacramento State - Cook - CSc 130 82

So, that took awhile…

Spring 2024 Sacramento State - Cook - CSc 130 83

 Notice that, to get the tail

now, we had to write loop to

traverse all the nodes

 If we knew where the tail was

beforehand, we wouldn't
need a loop

Adding to the End (with a tail)

Spring 2024 Sacramento State - Cook - CSc 130 84

next

1947

data next

1953

data

null

next

1930

data

head

The tail reference is

where the loop
would get us tail

79 80

81 82

83 84

15

Add Tail: 1. Link Tail to the New Node

Spring 2024 Sacramento State - Cook - CSc 130 85

next

1947

data next

1953

data

null

next

1930

data

head

The tail reference is

where the loop
would get us

next

1964

data

null

tail

Add Tail: 2. Update the Tail Reference

Spring 2024 Sacramento State - Cook - CSc 130 86

next

1947

data next

1953

datanext

1930

data

head

tail

next

1964

data

null

Of course, we need to

update the tail to
reference the new node

Add Tail: 2. Update the Tail Reference

Spring 2024 Sacramento State - Cook - CSc 130 87

next

1947

data next

1953

datanext

1930

data

head

next

1964

data

null

The tail references

the new node
tail

tail.next = add;

tail = add;

Adding to the end – with a Tail Node

Spring 2024 Sacramento State - Cook - CSc 130 88

Finding Second-to-Last

Spring 2024 Sacramento State - Cook - CSc 130 89

 As we noticed with the Singly-

Linked list, finding the last

item (to add at the end)
required a loop

 … or was immediate if we
maintained a tail node

reference

Finding Second-to-Last

Spring 2024 Sacramento State - Cook - CSc 130 90

 But, how do we remove the

last item?

 We can find the last item

immediately, but that would

make second-to-last the new
tail

85 86

87 88

89 90

16

Removing the Tail

Spring 2024 Sacramento State - Cook - CSc 130 91

next

1947

data next

1953

datanext

1930

data

head

next

1964

data

null

tail

Removing the Tail

Spring 2024 Sacramento State - Cook - CSc 130 92

next

1947

data next

1953

datanext

1930

data

head

tail

Still links to the old tail

How do we update this?

current = head;

while (current != null)

{

if (current.next == last)

{

nextToLast = current;

}

current = current.next; //Go to next node

}

// Now remove last

result = last;

nextToLast.next = null; //Remove the old list

last = nextToLast;

Remove Last –Linked List

Spring 2024 Sacramento State - Cook - CSc 130 93

Two Way Streets

Doubly-Linked

Lists

Doubly-Linked Lists

 Another variation of a linked

list is the doubly-linked list

 As the name implies, there

are two sets of links – one
that points to the next node
and one that points to the

previous

Spring 2024 Sacramento State - Cook - CSc 130 95

Doubly-Linked Lists

Spring 2024 Sacramento State - Cook - CSc 130 96

next

1930

dataprev

null

head

next

1947

dataprev next

1964

data

null

prev

tail

91 92

93 94

95 96

17

public class Node

{

public Object data;

public Node prev;

public Node next;

}

Doubly-Linked List Node

Spring 2024 Sacramento State - Cook - CSc 130 97

Sometimes
called last

Doubly Linked List: Add to the Head

Spring 2024 Sacramento State - Cook - CSc 130 98

1. Link New Node to the Head

2. Link Head Back to the New
Node

3. Update the Head Reference
to new node

Add Head: 1. Link New Node to the Head

Spring 2024 Sacramento State - Cook - CSc 130 99

head

next

1930

data

null

prev

null

tail

next

1947

dataprev

null

next

1953

dataprev next

1964

data

null

prev

Add Head: 2. Link Head Back to the New Node

Spring 2024 Sacramento State - Cook - CSc 130 100

head

next

1930

dataprev

null

tail

next

1947

dataprev

null

next

1953

dataprev next

1964

data

null

prev

Add Head: 3. Update the Head Reference

Spring 2024 Sacramento State - Cook - CSc 130 101

head

next

1930

dataprev

null

tail

next

1947

dataprev next

1953

dataprev next

1964

data

null

prev

Add Head: 3. Update the Head Reference

Spring 2024 Sacramento State - Cook - CSc 130 102

head

next

1930

dataprev

null

tail

next

1947

dataprev next

1953

dataprev next

1964

data

null

prev

97 98

99 100

101 102

18

// Link the new node to old head

add.next = head;

// Link the old head back to the new node

head.prev = add;

//Set head to the new node

head = add;

Add Head – Doubly Linked List

Spring 2024 Sacramento State - Cook - CSc 130 103

Also may be wise

to check if the
head == null

Doubly Linked List: Add to the Tail

Spring 2024 Sacramento State - Cook - CSc 130 104

1. Link Tail to the New Node

2. Link the New Node to the Old
Tail

3. Update the Tail Reference to
the New Node

Add Tail: 1. Link Tail to New Node

Spring 2024 Sacramento State - Cook - CSc 130 105

head

next

1930

dataprev

null

tail

next

1947

dataprev next

1953

data

null

prev

next

1964

data

null

prev

null

Add Tail: 2. Link the New Node to the Old Tail

Spring 2024 Sacramento State - Cook - CSc 130 106

head

next

1930

dataprev

null

tail

next

1947

dataprev next

1953

dataprev

next

1964

data

null

prev

null

Add Tail: 3. Update the Tail Reference

Spring 2024 Sacramento State - Cook - CSc 130 107

head

next

1930

dataprev

null

tail

next

1947

dataprev next

1953

dataprev next

1964

data

null

prev

Add Tail: 3. Update the Tail Reference

Spring 2024 Sacramento State - Cook - CSc 130 108

head

next

1930

dataprev

null

tail

next

1947

dataprev next

1953

dataprev next

1964

data

null

prev

103 104

105 106

107 108

19

// Link the old tail to the new node

tail.next = add;

// Link new node back to the old tail

add.prev = tail;

//Set tail to the new node

tail = add;

Add Tail – Doubly Linked List

Spring 2024 Sacramento State - Cook - CSc 130 109

Also may be wise

to check if the
tail == null

Doubly Linked List: Remove Head

Spring 2024 Sacramento State - Cook - CSc 130 110

1. Save Link to the Old Head

2. Update the Head Reference
to the Head's next reference

3. Remove links between Old
Head and New Head

Remove Head: 1. Save Link to the Old Head

Spring 2024 Sacramento State - Cook - CSc 130 111

head

next

1930

dataprev

null

tail

next

1947

dataprev next

1953

dataprev next

1964

data

null

prev

result

Remove Head: 2. Update the Head Reference

Spring 2024 Sacramento State - Cook - CSc 130 112

head

next

1930

dataprev

null

tail

next

1947

dataprev next

1953

dataprev next

1964

data

null

prev

result

Remove Head: 2. Update the Head Reference

Spring 2024 Sacramento State - Cook - CSc 130 113

head

next

1930

dataprev

null

tail

next

1947

dataprev next

1953

dataprev next

1964

data

null

prev

result

Remove Head: 3. Remove Links

Spring 2024 Sacramento State - Cook - CSc 130 114

head

next

1930

data

null

prev

null

tail

next

1947

dataprev

null

next

1953

dataprev next

1964

data

null

prev

result

109 110

111 112

113 114

20

Remove Head: Complete

Spring 2024 Sacramento State - Cook - CSc 130 115

head

next

1930

data

null

prev

null

tail

next

1947

dataprev

null

next

1953

dataprev next

1964

data

null

prev

result

// Save a reference to the tail

result = head;

//Set head to the head's next link

head = head.next;

//Remove links between old head and new head

head.prev = null;

result.next = null;

Remove Head – Doubly Linked List

Spring 2024 Sacramento State - Cook - CSc 130 116

Exactly the

same as a
singly linked list

Doubly Linked List: Remove Tail

Spring 2024 Sacramento State - Cook - CSc 130 117

1. Save Link to the Old Tail

2. Update the Tail Reference to
the previous reference of the
current Tail

3. Remove links between the

New Tail and the Old Tail

Remove Tail: 1. Save Link to the Old Tail

Spring 2024 Sacramento State - Cook - CSc 130 118

head

next

1930

dataprev

null

tail

next

1947

dataprev next

1953

dataprev next

1964

data

null

prev

result

Remove Tail: 2. Update the Tail Reference

Spring 2024 Sacramento State - Cook - CSc 130 119

head

next

1930

dataprev

null

tail

next

1947

dataprev next

1953

dataprev next

1964

data

null

prev

result

Remove Tail: 2. Update the Tail Reference

Spring 2024 Sacramento State - Cook - CSc 130 120

head

next

1930

dataprev

null

tail

next

1947

dataprev next

1953

dataprev next

1964

data

null

prev

result

115 116

117 118

119 120

21

Remove Tail: 3. Remove Links

Spring 2024 Sacramento State - Cook - CSc 130 121

head

next

1930

dataprev

null

tail

next

1947

dataprev next

1953

data

null

prev next

1964

data

null

prev

null

result

Remove Tail: Complete

Spring 2024 Sacramento State - Cook - CSc 130 122

head

next

1930

dataprev

null

tail

next

1947

dataprev next

1953

data

null

prev next

1964

data

null

prev

null

result

// Save a reference to the tail

result = tail;

//Set tail to the previous of the old tail

tail = tail.prev;

//Remove links between old tail and new tail

tail.next = null;

result.prev = null;

Remove Tail – Doubly Linked List

Spring 2024 Sacramento State - Cook - CSc 130 123

Creating a train of nodes

Singly-Linked

List Class

Linked List Class

 Maintaining both a head and

tail node can be a tad difficult

 So, we can place them into a

LinkedList class

 Then we can write methods

to add to the end (the tail)

and the front (the head)

Spring 2024 Sacramento State - Cook - CSc 130 125

class LinkedList

{

public Node head;

public Node tail;

}

Linked List Class

Spring 2024 Sacramento State - Cook - CSc 130 126

121 122

123 124

125 126

22

public void AddTail(Node node)

{

if (head == null) //Add first node

{

head = node; //Link both

tail = node;

}

else

{

tail.next = node; //Link old tail to the new node

tail = node; //Now the new node is the tail

}

}

Linked List Class

Spring 2024 Sacramento State - Cook - CSc 130 127

public void AddHead(Node node)

{

if (head == null) //Add first node

{

head = node; //Link both

tail = node;

}

else

{

node.next = head; //Link new node to the current head

head = node; //Now the new node is the head

}

}

Linked List Class

Spring 2024 Sacramento State - Cook - CSc 130 128

Linked List Class

 Now that we have

compensated for the head/tail

being null, we can also a
method to remove the head

 But there are more cases that
need to be considered

Spring 2024 Sacramento State - Cook - CSc 130 129

Linked List Class

1. There are 2+ nodes (the

head and tail are different)

2. There is only one node (the

head and tail are the same)

3. There are no nodes

Spring 2024 Sacramento State - Cook - CSc 130 130

public Node RemoveHead()

{

Node result;

if (head == null)

{

result = null; //We could also throw an error

}

else if (head == tail) //Just one node. Set both head/tail to null

{

result = head; //...or tail – it doesn't matter here. Note, we are saving the reference in 'result'.

head = null; //Deference both

tail = null;

}

else //2 or more nodes.

{

result = head;

head = head.next; //Link new node to the current head

}

return result;

}

Spring 2024 Sacramento State - Cook - CSc 130 131

Linked List Big-O

How Good Is This?

127 128

129 130

131 132

23

 Linked lists are a fundamental

data structure that was

covered in CSC 20

 Data is stored in a series of

nodes which are connected
with links

Linked List Data Structure

Spring 2024 Sacramento State - Cook - CSc 130 133

 Unlike arrays, where the

element can be found using a

calculation, linked-lists
require the list to be traversed

 So, finding an item in a linked
list requires O(n)

Linked List Data Structure

Spring 2024 Sacramento State - Cook - CSc 130 134

Single-Linked List – Find D

A CB D E F

Head

Spring 2024 Sacramento State - Cook - CSc 130 135

Single-Linked List – Find D

A CB D E F

Head

Spring 2024 Sacramento State - Cook - CSc 130 136

Single-Linked List – Find D

A CB D E F

Head

Spring 2024 Sacramento State - Cook - CSc 130 137

Single-Linked List – Find D

A CB D E F

Head

Spring 2024 Sacramento State - Cook - CSc 130 138

133 134

135 136

137 138

24

Head and Tail Nodes

Spring 2024 Sacramento State - Cook - CSc 130 139

 Linked lists maintain a link to

the head node

 Often, in well-written linked

lists, a link to the tail node is

also maintained

 Why? It has a huge impact on

time complexity

Append Value – No Tail Node

Spring 2024 Sacramento State - Cook - CSc 130 140

A CB D

Head

Append Value – No Tail Node

Spring 2024 Sacramento State - Cook - CSc 130 141

A CB D

Head

Append Value – No Tail Node

Spring 2024 Sacramento State - Cook - CSc 130 142

A CB D

Head

Append Value – No Tail Node

Spring 2024 Sacramento State - Cook - CSc 130 143

A CB D

Head

E

Had to travel to

end to append

 Without a tail node, the entire

list must be traversed to find

the end

 This will require O(n)

 Adding a tail node, will

decrease it to O(1)

Head and Tail Nodes

Spring 2024 Sacramento State - Cook - CSc 130 144

139 140

141 142

143 144

25

Append Value – With Tail Node

Spring 2024 Sacramento State - Cook - CSc 130 145

A CB D

Head Tail

Append Value – With Tail Node

Spring 2024 Sacramento State - Cook - CSc 130 146

A CB D

Head

E

Didn't have to

traverse list

Tail

Append Value – With Tail Node

Spring 2024 Sacramento State - Cook - CSc 130 147

A CB D

Head

E

Tail

 Unless you are only

appending nodes at the head

of a linked list, maintain a tail
node

 For all the examples used in
these slides… assume the

linked list has a tail node

Use a Tail Node!

Spring 2024 Sacramento State - Cook - CSc 130 148

 Unlike arrays, linked lists
must store the "next" links
between nodes

 So, the auxiliary storage
overhead is O(n)

• …which is usually the size of
an address

• 64-bit system  8 bytes

Auxiliary Storage in Linked Lists

Spring 2024 Sacramento State - Cook - CSc 130 149

LinkedList list;

for(i = 0; i < list.Count; i++)

{

total += list.Find(i);

}

Big-O: Test Your Might…

O(n2)

O(n)

O(n)

Spring 2024 Sacramento State - Cook - CSc 130 150

145 146

147 148

149 150

26

 To avoid accidental O(n2),
major programming
languages support iterator
objects

 They store information about
the current state (e.g. a node)
when data is being are
sequentially read

Iterators

Spring 2024 Sacramento State - Cook - CSc 130 151

 Iterators maintain O(n) for
sequentially accessing all the
list's elements

 This is the purpose of the
For-Each Statement

 Notation varies greatly
between languages (when
they are supported)

Iterators

Spring 2024 Sacramento State - Cook - CSc 130 152

Linked ListDynamic ArrayOperation

O(n)O(1)Find (to read or write)

O(n)O(n)Insert (arbitrary)

O(1)O(n)Add first/last

O(1)O(n)Remove first/last

O(n)O(1)Auxiliary storage

Spring 2024 Sacramento State - Cook - CSc 130 153

Dynamic Array vs. Linked List

Vectors

151 152

153

