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Linked List

Data Structure

Part 2 Return to CSC 15 and CSC 20

Data Structures

Data Structures
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 Arrays and linked-lists are 
both examples of data 
structures

 These are different 
techniques of storing and 
organizing data

 In other words, this is how
data is stored

 Depending on how data is 

accessed, some data 

structures can either excel 
and falter

 This is true of both arrays and 
linked lists

Data Structures
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 We will do a quick review of 

arrays and linked lists

 There are more data 

structures than these two

 We will cover them this 

semester – some which have 

incredible in features

Data Structures
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Array Data 

Structure

Hidden math = easy code
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3 4
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 The array data structure is 

found in practically every 

programming language

 This is also one of the 

fundamental ways data is 
stored in memory

Array Data Structure
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 Arrays are just continuous

blocks of memory containing 

multiple instances of the 
same type

 Since the instances are 
continuous, values can be 

accessed randomly in O(1)

Behind the Scenes…
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Array Math Example: 64-bit int
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 Let's assume the array 

starts at address 2000

 Each array element 

will take 8 bytes (for 

64-bit integers)

 Array elements are 

stored continuous

446576696E20436F2000

6F6B0000000000002008

53616372616D656E2016

746F2053746174652024

43534333350000002032

Array Math Example: 64-bit int

Spring 2024 Sacramento State - Cook - CSc 130 10

 array[0] is 2000

 array[1] is 2008

 array[2] is 2016

 array[3] is 2024

 array[4] is 2032

 etc…

446576696E20436F2000

6F6B0000000000002008

53616372616D656E2016

746F2053746174652024

43534333350000002032

start + (index × element_size)

Behind the Scenes…

 So, when an array element is read, internally, a 
mathematical equation is used

 It uses the start array, the array index, and the size of 
each element

Spring 2024 Sacramento State - Cook - CSc 130 11

Behind the Scenes…

 This is why the C Programming Language uses zero 
as the first array element

 If zero is used with this formula, it gets the start of the 
array

start + (index × element_size)

Spring 2024 Sacramento State - Cook - CSc 130 12

7 8

9 10

11 12



3

 Also, because elements are 

calculated, there is no extra 

storage overhead based on 
the array size

 So, the auxiliary storage 
overhead is O(1)

Auxiliary Storage in arrays
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 A dynamically allocated array 

(aka dynamic array) is 

resized anytime an object is 
added or removed

 Because arrays require all
elements to be stored 

continuously…

Resizing Arrays
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 …the old block of memory 

(old array) needs to be copied

to a new one

 This is extremely costly in 

both time and resources

Resizing Arrays
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Arrays in Memory

New blockCurrent block

Current array

Already being used 

or other data
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Copy Values to New Block

Copy

New element 

here
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Current block

0

1

2

3

4

5

6

7

8

New block

 While reading / writing 

elements takes only O(1)…

 … every time an array is 

resized, it will require O(n)

time to copy the old array to 
the new one

Resizing Arrays is O(n)
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 Arrays can also have a fixed 
sized called a capacity

 The array is never resized 
and often only partially filled

 Also known as:

• fixed array

• partially filled array

Fixed-Sized Arrays
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 An "end" index is maintained

 This type of array overcomes 
the O(n) nature of dynamic 
arrays

 But a cost – it has a limit that 

cannot be exceeded

Fixed-Sized Arrays
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Fixed-Size Array
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0 1 2 3 4 5 6 7 8 9

End

 Sometimes, you might need 

an array that wraps

 These are useful if both the 

first and last items can be 

removed

 … or older items can be 

discarded if space is needed

Fixed-Size Wrapping Around
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 In addition to a "end" index, a 

"start" index is maintained

 Once the end of the array is 

reached, the array "wraps" to 

index 0

 … and continues until end is 

reached

Fixed-Size Wrapping Around
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Fixed-Size Array
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Can wrap around

0 1 2 3 4 5 6 7 8 9

StartEnd
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Linked Lists

Chain of Data

Linked Lists
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 The array (and the ArrayList) 

are just two, of many, ways of 

storing a collection

 Linked lists uses a series of 

"linked" instances to store a 
collection

 Since a variable can contain either an instance 

reference or null, we can something quite clever

 An instance can contain a reference to another 

instance – of the same class

 This creates a chain of connected instances.

 It ends when the "link" is null

How Does It Work?

Spring 2024 Sacramento State - Cook - CSc 130 27

class Book 

{

public String name;

public Book sequel;

}

How Does That Work?

A reference to another Book instance
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Chain of Books
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sequel

The Fellowship of 

the Ring

name sequel

The Two Towers

name sequel

Return of the King

name

null

Chain of Instances
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 Notice that the last example 

is essentially storing Strings

 Can we store other things?

 Yes! This is very simple 
approach to store any type of 

data

25 26

27 28

29 30
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Chain of Instances
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 Each link in our chain, that 

stores a piece of information, 

is called a Node

 The definition of a Node is 

extremely simple: data and a 
link to the next node

public class Node

{

public Object data;

public Node next;

}

Generic Node Class
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We can make this 
another type

Node list = new Node();

list.data = "rat";

list.next = new Node();

list.next.data = "owl";

list.next.next = new Node();

list.next.next.data = "cat";

list.next.next.next = null;

Creating a List (not well, though)
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public Node(Object initData, Node initNext)

{

this.data = initData;

this.next = initNext;

}  

public Node(Object initData)

{

this.data = initData;

this.next = null;

}      

Constructors Will Help
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Constructors Do Help
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Node list = new Node("Rat", new Node("Owl", new Node("Cat")));

 Constructors do help

 Though it is still a tad hard to read

Node rat = new Node("Rat");

Node owl = new Node("Owl");

Node cat = new Node("Cat");

rat.next = owl;

owl.next = cat;

We Could Also Do This…
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Traversing a 

Linked List

Chain of Data

Traversing a Linked List

Spring 2024 Sacramento State - Cook - CSc 130 38

 Unlike arrays, where the 

element can be found using a 

calculation, linked-lists 
require the list to be traversed

 This is typically done using a 
while loop and variable 

representing the current node

public class Node

{

public int data;

public Node next;

}

Node for Integers
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Let's use int's 
for now

Let's Try This List
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next

1930

data next

1947

data next

1964

data

null

next

1953

data

head

current = head;

while (current != null) 

{

System.out.println(current.data);

current = current.next;  //Go to next node

}

While Loop – Follow the Links
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Traversing the List
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next

1930

data next

1947

data next

1964

data

null

next

1953

data

head

37 38

39 40

41 42
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Traversing the List
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next

1930

data next

1947

data next

1964

data

null

next

1953

data

head

Traversing the List
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next

1930

data next

1947

data next

1964

data

null

next

1953

data

head

Traversing the List
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next

1930

data next

1947

data next

1964

data

null

next

1953

data

head

Adding to 

Linked Lists

Chain of Data

Adding to Linked Lists
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 Adding to Linked Lists is easy 

to do, but must done with 

considerable care

 The links (references) need to 

be updated in a specific order

 … or a link will be lost

Adding to Linked Lists
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 The first item in a linked list is 

referred to as the Head

(alternatively Front)

 The last item, in which the 

next field is null, is called the 
Tail

43 44

45 46

47 48
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Adding to Linked Lists
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 In this section, we will add a 

new node to the front, middle, 

and end of a linked list

 Most of these actions require 

just two steps

Let’s Assume We Have This List
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next

1930

name next

1947

name next

1964

name

null

Adding to the Tail of a List
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1. Link the tail node (who's next 

field is null) to the newly 

added node

2. If a reference to the tail is 

being maintained, it is linked 
to the newly added node

Add Tail: 1. Link Tail to the New Node
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next

1930

data next

1947

data next

1964

data

null

next

1953

data

null

head

Add Tail: Resulting List
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next

1930

data next

1947

data next

1964

data next

1953

data

nullhead

// add is the new node

// tail is the last node in the list

tail.next = add;

Adding to the Tail of a List
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Adding to the Head of a List
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1. The newly added node is 

linked to the head of the list

2. The head is then linked to the 
newly added node

Adding to the Head of a List
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next

1930

data next

1947

data next

1964

data

null

next

1953

data

null

head

Add Head: 1. Link Node to Head's Reference
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next

1930

data next

1947

data next

1964

data

null

next

1953

data

null

head

Add Head: 2. Set Head Reference to the Node
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next

1930

data next

1947

data next

1964

data

null

next

1953

data

null

head

Add Head: 2. Set Head Reference to the Node
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next

1930

data next

1947

data next

1964

data

null

next

1953

data

head

Add Head: Resulting List
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next

1930

data next

1947

data next

1964

data

null

next

1953

data

head

55 56

57 58

59 60
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// add is the new node

// head is the first node in the list

add.next = head;

head = add;

Adding to the Head of a List

Spring 2024 Sacramento State - Cook - CSc 130 61

Adding to the Middle of a List
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1. The new node is linked to 

target of the previous node 

(before where we want to 
insert)

2. The previous node is then 
linked to the new node

Adding to the Middle of a List
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next

1930

data next

1947

data next

1964

data

null

next

1953

data

null

head

Add Middle: 1. Link Node to Next
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next

1930

data next

1947

data next

1964

data

null

next

1953

data

null

head

Add Middle: 2. Link Previous to the Node
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next

1930

data next

1947

data next

1964

data

null

next

1953

data

null

head

Add Middle: 2. Link Previous to the Node
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next

1930

data next

1947

data next

1964

data

null

next

1953

data

null

head

61 62

63 64

65 66
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Add Middle: Resulting List
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next

1930

data next

1947

data next

1964

data

null

next

1953

data

head

// add is the new node

// prev is the node before where 

// add is to be inserted

add.next = prev.ext;

prev.next = add;

Adding to the Middle of a List
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Removing The Head Node
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1. Save Link to the Old Head

2. Update the Head Reference 
to the Head's next link

3. Remove the link from the old 
head to the new head

Remove Head: 1. Save Link to the Old Head
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next

1930

data next

1947

data next

1964

data

null

next

1953

data

head

result

Remove Head: 2. Update the Head Reference
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next

1930

data next

1947

data next

1964

data

null

next

1953

data

head

result

Remove Head: 2. Update the Head Reference
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next

1930

data next

1947

data next

1964

data

null

next

1953

data

head

result

67 68

69 70

71 72
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Remove Head: 3. Remove the Link
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next

1930

data

null

next

1947

data next

1964

data

null

next

1953

data

head

result

Remove Head: Complete
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next

1930

data

null

next

1947

data next

1964

data

null

next

1953

data

head

result

// Save a reference to the head

result = head;

//Set head to the head's next link

head = head.next;

//Remove link between old head and new head

result.next = null;

Remove Head
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Exactly the 

same as a 
singly linked list

One should keep track the caboose

Maintaining 

a Tail Node

Head and Tail Nodes
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 Linked lists maintain a link to 

the head node

 Often, in well-written linked 
lists, a link to the tail node is 

also maintained

 It is far more efficient

Adding to the End
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next

1930

data next

1947

data

null

next

1953

data

head

Current Node

73 74

75 76

77 78
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Adding to the End
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next

1930

data next

1947

data

null

next

1953

data

head

Current Node

Adding to the End
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next

1930

data next

1947

data

null

next

1953

data

head

Current Node

Found the last node 

in the list. 
next == null

Adding to the End
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next

1930

data next

1947

data

null

next

1953

data

head

Current Node
The new node is 

added

next

1964

data

null

current = head;

while (current.next != null) 

{

current = current.next;  //Go to next node

}

// Current is now the tail. Link tail to new node

current.next = add;

While Loop – Follow the Links
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So, that took awhile…
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 Notice that, to get the tail 

now, we had to write loop to 

traverse all the nodes

 If we knew where the tail was 

beforehand, we wouldn't 
need a loop

Adding to the End (with a tail)
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next

1947

data next

1953

data

null

next

1930

data

head

The tail reference is 

where the loop 
would get us tail

79 80

81 82

83 84
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Add Tail: 1. Link Tail to the New Node
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next

1947

data next

1953

data

null

next

1930

data

head

The tail reference is 

where the loop 
would get us

next

1964

data

null

tail

Add Tail: 2. Update the Tail Reference
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next

1947

data next

1953

datanext

1930

data

head

tail

next

1964

data

null

Of course, we need to 

update the tail to 
reference the new node

Add Tail: 2. Update the Tail Reference
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next

1947

data next

1953

datanext

1930

data

head

next

1964

data

null

The tail references 

the new node
tail

tail.next = add;

tail = add;

Adding to the end – with a Tail Node
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Finding Second-to-Last

Spring 2024 Sacramento State - Cook - CSc 130 89

 As we noticed with the Singly-

Linked list, finding the last 

item (to add at the end) 
required a loop

 … or was immediate if we 
maintained a tail node 

reference

Finding Second-to-Last
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 But, how do we remove the 

last item?

 We can find the last item 

immediately, but that would 

make second-to-last the new 
tail

85 86

87 88

89 90
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Removing the Tail
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next

1947

data next

1953

datanext

1930

data

head

next

1964

data

null

tail

Removing the Tail
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next

1947

data next

1953

datanext

1930

data

head

tail

Still links to the old tail

How do we update this?

current = head;

while (current != null) 

{  

if (current.next == last)

{

nextToLast = current;

}

current = current.next;    //Go to next node

}

// Now remove last

result = last;

nextToLast.next = null;       //Remove the old list

last = nextToLast;

Remove Last –Linked List
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Two Way Streets

Doubly-Linked 

Lists

Doubly-Linked Lists

 Another variation of a linked 

list is the doubly-linked list

 As the name implies, there 

are two sets of links – one 
that points to the next node 
and one that points to the 

previous
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Doubly-Linked Lists
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next

1930

dataprev

null

head

next

1947

dataprev next

1964

data

null

prev

tail

91 92

93 94

95 96
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public class Node

{

public Object data;

public Node prev;

public Node next;

}

Doubly-Linked List Node
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Sometimes 
called last

Doubly Linked List: Add to the Head
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1. Link New Node to the Head 

2. Link Head Back to the New 
Node

3. Update the Head Reference 
to new node

Add Head: 1. Link New Node to the Head
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head

next

1930

data

null

prev

null

tail

next

1947

dataprev

null

next

1953

dataprev next

1964

data

null

prev

Add Head: 2. Link Head Back to the New Node
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head

next

1930

dataprev

null

tail

next

1947

dataprev

null

next

1953

dataprev next

1964

data

null

prev

Add Head: 3. Update the Head Reference
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head

next

1930

dataprev

null

tail

next

1947

dataprev next

1953

dataprev next

1964

data

null

prev

Add Head: 3. Update the Head Reference
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head

next

1930

dataprev

null

tail

next

1947

dataprev next

1953

dataprev next

1964

data

null

prev

97 98

99 100

101 102
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// Link the new node to old head

add.next = head;

// Link the old head back to the new node

head.prev = add;

//Set head to the new node

head = add;    

Add Head – Doubly Linked List
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Also may be wise 

to check if the
head == null  

Doubly Linked List: Add to the Tail
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1. Link Tail to the New Node

2. Link the New Node to the Old 
Tail

3. Update the Tail Reference to 
the New Node

Add Tail: 1. Link Tail to New Node
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head

next

1930

dataprev

null

tail

next

1947

dataprev next

1953

data

null

prev

next

1964

data

null

prev

null

Add Tail: 2. Link the New Node to the Old Tail
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head

next

1930

dataprev

null

tail

next

1947

dataprev next

1953

dataprev

next

1964

data

null

prev

null

Add Tail: 3. Update the Tail Reference
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head

next

1930

dataprev

null

tail

next

1947

dataprev next

1953

dataprev next

1964

data

null

prev

Add Tail: 3. Update the Tail Reference
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head

next

1930

dataprev

null

tail

next

1947

dataprev next

1953

dataprev next

1964

data

null

prev

103 104

105 106

107 108
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// Link the old tail to the new node

tail.next = add;

// Link new node back to the old tail

add.prev = tail;

//Set tail to the new node

tail = add;    

Add Tail – Doubly Linked List
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Also may be wise 

to check if the
tail == null  

Doubly Linked List: Remove Head 
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1. Save Link to the Old Head

2. Update the Head Reference 
to the Head's next reference

3. Remove links between Old 
Head and New Head

Remove Head: 1. Save Link to the Old Head
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head

next

1930

dataprev

null

tail

next

1947

dataprev next

1953

dataprev next

1964

data

null

prev

result

Remove Head: 2. Update the Head Reference
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head

next

1930

dataprev

null

tail

next

1947

dataprev next

1953

dataprev next

1964

data

null

prev

result

Remove Head: 2. Update the Head Reference
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head

next

1930

dataprev

null

tail

next

1947

dataprev next

1953

dataprev next

1964

data

null

prev

result

Remove Head: 3. Remove Links
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head

next

1930

data

null

prev

null

tail

next

1947

dataprev

null

next

1953

dataprev next

1964

data

null

prev

result
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Remove Head: Complete
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head

next

1930

data

null

prev

null

tail

next

1947

dataprev

null

next

1953

dataprev next

1964

data

null

prev

result

// Save a reference to the tail

result = head;

//Set head to the head's next link

head = head.next;

//Remove links between old head and new head

head.prev = null;

result.next = null;

Remove Head – Doubly Linked List
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Exactly the 

same as a 
singly linked list

Doubly Linked List: Remove Tail 
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1. Save Link to the Old Tail

2. Update the Tail Reference to 
the previous reference of the 
current Tail

3. Remove links between the 

New Tail and the Old Tail

Remove Tail: 1. Save Link to the Old Tail
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head

next

1930

dataprev

null

tail

next

1947

dataprev next

1953

dataprev next

1964

data

null

prev

result

Remove Tail: 2. Update the Tail Reference
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head

next

1930

dataprev

null

tail

next

1947

dataprev next

1953

dataprev next

1964

data

null

prev

result

Remove Tail: 2. Update the Tail Reference
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head

next

1930

dataprev

null

tail

next

1947

dataprev next

1953

dataprev next

1964

data

null

prev

result
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Remove Tail: 3. Remove Links
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head

next

1930

dataprev

null

tail

next

1947

dataprev next

1953

data

null

prev next

1964

data

null

prev

null

result

Remove Tail: Complete
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head

next

1930

dataprev

null

tail

next

1947

dataprev next

1953

data

null

prev next

1964

data

null

prev

null

result

// Save a reference to the tail

result = tail;

//Set tail to the previous of the old tail

tail = tail.prev;  

//Remove links between old tail and new tail

tail.next = null;

result.prev = null;  

Remove Tail – Doubly Linked List
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Creating a train of nodes

Singly-Linked 

List Class

Linked List Class

 Maintaining both a head and 

tail node can be a tad difficult

 So, we can place them into a 

LinkedList class

 Then we can write methods 

to add to the end (the tail) 

and the front (the head)
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class LinkedList

{

public Node head;

public Node tail;

}

Linked List Class
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public void AddTail(Node node)

{

if (head == null)     //Add first node

{ 

head = node; //Link both

tail = node;

}

else

{

tail.next = node; //Link old tail to the new node

tail = node;         //Now the new node is the tail

}

}

Linked List Class
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public void AddHead(Node node)

{

if (head == null)     //Add first node

{

head = node; //Link both

tail = node;

}

else

{

node.next = head;   //Link new node to the current head

head = node;         //Now the new node is the head

}

}

Linked List Class
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Linked List Class

 Now that we have 

compensated for the head/tail 

being null, we can also a 
method to remove the head

 But there are more cases that 
need to be considered
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Linked List Class

1. There are 2+ nodes (the 

head and tail are different)

2. There is only one node (the 

head and tail are the same)

3. There are no nodes 
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public Node RemoveHead()

{

Node result;

if (head == null)

{

result = null;         //We could also throw an error

}

else if (head == tail)     //Just one node. Set both head/tail to null

{

result = head;         //...or tail – it doesn't matter here. Note, we are saving the reference in 'result'.

head = null; //Deference both

tail = null;

}

else                       //2 or more nodes.

{

result = head; 

head = head.next;   //Link new node to the current head

} 

return result;

}
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Linked List Big-O

How Good Is This?
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129 130
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 Linked lists are a fundamental 

data structure that was 

covered in CSC 20

 Data is stored in a series of 

nodes which are connected 
with links

Linked List Data Structure

Spring 2024 Sacramento State - Cook - CSc 130 133

 Unlike arrays, where the 

element can be found using a 

calculation, linked-lists 
require the list to be traversed

 So, finding an item in a linked 
list requires O(n)

Linked List Data Structure
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Single-Linked List – Find D

A CB D E F

Head
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Single-Linked List – Find D

A CB D E F

Head
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Single-Linked List – Find D

A CB D E F

Head
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Single-Linked List – Find D

A CB D E F

Head
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Head and Tail Nodes
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 Linked lists maintain a link to 

the head node

 Often, in well-written linked 

lists, a link to the tail node is 

also maintained

 Why? It has a huge impact on 

time complexity

Append Value – No Tail Node
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A CB D

Head

Append Value – No Tail Node
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A CB D

Head

Append Value – No Tail Node
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A CB D

Head

Append Value – No Tail Node
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A CB D

Head

E

Had to travel to 

end to append

 Without a tail node, the entire 

list must be traversed to find 

the end

 This will require O(n)

 Adding a tail node, will 

decrease it to O(1)

Head and Tail Nodes
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Append Value – With Tail Node
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A CB D

Head Tail

Append Value – With Tail Node
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A CB D

Head

E

Didn't have to 

traverse list

Tail

Append Value – With Tail Node
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A CB D

Head

E

Tail

 Unless you are only 

appending nodes at the head 

of a linked list, maintain a tail 
node

 For all the examples used in 
these slides… assume the 

linked list has a tail node

Use a Tail Node!
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 Unlike arrays, linked lists 
must store the "next" links 
between nodes

 So, the auxiliary storage 
overhead is O(n) 

• …which is usually the size of 
an address 

• 64-bit system  8 bytes

Auxiliary Storage in Linked Lists
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LinkedList list;

for(i = 0; i < list.Count; i++)  

{

total += list.Find(i);

}

Big-O: Test Your Might…

O(n2)

O(n)

O(n)
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 To avoid accidental O(n2), 
major programming 
languages support iterator 
objects

 They store information about 
the current state (e.g. a node) 
when data is being are 
sequentially read

Iterators
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 Iterators maintain O(n) for 
sequentially accessing all the 
list's elements

 This is the purpose of the 
For-Each Statement

 Notation varies greatly 
between languages (when 
they are supported)

Iterators
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Linked ListDynamic ArrayOperation

O(n)O(1)Find (to read or write)

O(n)O(n)Insert (arbitrary)

O(1)O(n)Add first/last

O(1)O(n)Remove first/last

O(n)O(1)Auxiliary storage
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Dynamic Array vs. Linked List

Vectors
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