
1

Stacks & Queues

Part 3 Abstraction is power

Data Abstraction

 Data types are used in

practically all programming

languages

 The core data types found in

language is known as a
primitive data type

Abstract Data Types

Spring 2024 Sacramento State - Cook - CSc 130 3

1. Set of possible values

2. Operations on the data

• these are alternatively called

functions or methods

• data types often define the

errors can occur during each

operation

Data Types Specify 2 Things

Spring 2024 Sacramento State - Cook - CSc 130 4

int n;

Integer Example

 int is a type (found in most languages)

 The 32-bit version can contain values from
-231 to 231 -1

Spring 2024 Sacramento State - Cook - CSc 130 5

int n;

Integer Example

 Operations include: +, *, -, /, %, and many more

(e.g. comparisons)

Spring 2024 Sacramento State - Cook - CSc 130 6

1 2

3 4

5 6

2

 An abstract data type (ADT)

hides how it is implemented

from the client (programmer)

 The client only interacts with

the defined operations

Abstract Data Types

Spring 2024 Sacramento State - Cook - CSc 130 7

 This layer of abstraction

separates implementation

from behavior

 And, it allows you to change

the data structure – without
breaking the ADT

Abstract Data Types

Spring 2024 Sacramento State - Cook - CSc 130 8

 An ADT is implementation

independent

 Can, internally, use any data
structure

• array, linked list, etc…

• depending how the ADT works,

some are better than others

ADTs vs Data Structures

Spring 2024 Sacramento State - Cook - CSc 130 9

 ADT defines an interface

 It defines:

• operations (public methods)

• properties (public fields)

ADTs vs Data Structures

Spring 2024 Sacramento State - Cook - CSc 130 10

Data Structures

Clients that

use the ADT

Class which
implements the

ADT

Data

Structure

Interface

Spring 2024 Sacramento State - Cook - CSc 130 11

 Data stores orders of cheese

 The operations supported are

• buy (cheese, count)

• sell (cheese, count)

• cancel (Order)

• balance – current funds

Example ADT: Cheese Trader

Spring 2024 Sacramento State - Cook - CSc 130 12

7 8

9 10

11 12

3

 Error conditions:

• nonexistent cheese

• sell a cheese we don't have

• count is not greater than 0

Example ADT: Cheese Trader

Spring 2024 Sacramento State - Cook - CSc 130 13

public class CheeseTrader

Returns order #buy(String name, int count)int

Returns order #sell(String name, int count)int

cancel(int order)void

balance()double

Spring 2024 Sacramento State - Cook - CSc 130 14

Cheese Trader Interface

Stacks

Piles of… Data

 The Stack ADT stores objects

based on the concept of a

stack of items – like a stack of
dishes

 Data can only be added to or
removed from the top of the

stack

Stack

Spring 2024 Sacramento State - Cook - CSc 130 16

 This gives a first-in-last-out

logic (aka FILO)

 Same concept is also called
last-in-first-out (LIFO)

Stack

Spring 2024 Sacramento State - Cook - CSc 130 17

Stack Operation: Push

Spring 2024 Sacramento State - Cook - CSc 130 18

 A value is added to the

stack

 It is placed on the top
location

 Rest of the items are

"covered"

13 14

15 16

17 18

4

Stack Operation: Pop

Spring 2024 Sacramento State - Cook - CSc 130 19

 Removes an item from
the stack

 Last item added is
removed

 2nd item becomes the
top

public class Stack

Create empty stack Stack()

push(Object item)void

pop()Object

Return top. Sometimes called Peek()top()Object

isEmpty()bool

Spring 2024 Sacramento State - Cook - CSc 130 20

Stack Interface

 The execution of an operation may sometimes

cause an error condition, called an exception

 Exceptions are said to be “thrown” by an operation
that cannot be executed

 In the Stack ADT, operations pop and top cannot

be performed if the stack is empty

Stacks: Error Conditions

Spring 2024 Sacramento State - Cook - CSc 130 21

Resizing an Array-Based Stack

Spring 2024 Sacramento State - Cook - CSc 130 22

 For stacks, if a dynamically

allocated array is used, each

pop/push will require the
entire array to be resized

 It will require O(n)

 So, a dynamic array is a poor

choice

One Solution… Not a Great One

Spring 2024 Sacramento State - Cook - CSc 130 23

 The array could grow/shrink
by a specific # of elements

 So, the array will resize only
when a new "block" of
elements is needed

 Like a fixed-capacity array,
we need to keep an end
index

Fixed-Capacity Stacks

Spring 2024 Sacramento State - Cook - CSc 130 24

 A fixed-capacity array can be

used instead

 For a fixed-capacity stack, an

array is an excellent choice –

in specific situations…

19 20

21 22

23 24

5

Array-Based Fixed-Capacity Stack

Spring 2024 Sacramento State - Cook - CSc 130 25

 The stack would behave as normal until the

capacity is reached

 In this case, one of two things will happen…

1. Stack throws an Overflow Error

2. Stack discards an object

• the bottom of the stack is typically removed

• this gives the space needed for the newly pushed object

• e.g. the history feature of your web browser

Spring 2024 Sacramento State - Cook - CSc 130 26

When the Stack is filled…

Linked ListResizable Array
Fixed-Capacity

Array
Operation

O(1)O(n)O(1)Pop()

O(1)O(n)O(1)Push()

O(1)O(1)O(1)Top()

Spring 2024 Sacramento State - Cook - CSc 130 27

Stack Summary

Queues

Conga-line of Data!

Queues

Spring 2024 Sacramento State - Cook - CSc 130 29

 Queue ADT stores list of
arbitrary objects

 Based on the concept of a
line – e.g. when you buy
groceries

 Objects enter the back of the
line, and must wait for prior
items to leave before they do

 In most parts of the World,

they call a "line" a "queue"

 Main queue operations:

• enqueue (object): place on item

on the queue

• dequeue: removes and returns

the first inserted object

Queues

Spring 2024 Sacramento State - Cook - CSc 130 30

25 26

27 28

29 30

6

Queue Operation: Enqueue

Spring 2024 Sacramento State - Cook - CSc 130 31

 When an object is

"enqueued", it is put on

to the end of the
queue

 The items on the top of
the queue are not

covered

Queue Operation: Dequeue

Spring 2024 Sacramento State - Cook - CSc 130 32

 Dequeue removes the
item from the front of
the queue

 Second item becomes
the new first item

 This gives a first-in-
first-out logic (aka
FIFO)

 Queues also tend to have some operations defined

 These are not necessary, but they are useful

 Auxiliary operations:

• peek: return the next object without removing it. This is also

sometimes called "front"

• size: returns the number of objects on the queue

• isEmpty: indicates whether the queue contains no objects. This is an

alterative to size()

Auxiliary Queue Operations

Spring 2024 Sacramento State - Cook - CSc 130 33

public class Queue

Create empty queue Queue()

enqueue(Object item)void

dequeue()Object

size()int

Return first item, without dequeuepeek()Object

Spring 2024 Sacramento State - Cook - CSc 130 34

Queue Interface

Linked ListResizable Array
Fixed-Capacity

Array
Operation

O(1)O(n)O(1)Enqueue()

O(1)O(n)O(1)Dequeue()

O(1)O(1)O(1)Peek()

Spring 2024 Sacramento State - Cook - CSc 130 35

Queue Summary

The Deque ADT

Time to shuffle the "deck"

31 32

33 34

35 36

7

Deque ADT

 There is a variant of the

queue called a deque

(pronounced "deck")

 The name is derived from
double-ended queue
(sometimes it is shorted more

to DQ)

Spring 2024 Sacramento State - Cook - CSc 130 37

 As the name implies, it’s a queue
allows insertions and removals
from both ends

 It is a merging of a stack and
queue ADT and the operations are
union of the two

 Be warned: name of each
operation varies greatly between
programming languages

Deque ADT

Spring 2024 Sacramento State - Cook - CSc 130 38

 addFront

• place an object on the front of the deque

• this is same as stack "push"

• also called: offerFirst, pushFirst

 addBack

• place an object on the end of the deque

• this is the same as queue "enqueue"

• also called: offerLast, pushLast

Deque ADT

Spring 2024 Sacramento State - Cook - CSc 130 39

 removeFront

• remove an object from the front of the deque

• same as: queue "dequeue" or stack "pop"

• also called: pollFirst, popFront

 removeBack

• this is unique – and not found in either a stack or queue ADT

• also called pollLast, popBack

Deque ADT

Spring 2024 Sacramento State - Cook - CSc 130 40

public class Deque

Create empty deque Deque()

addFront(Object item)void

addBack(Object item)void

removeFront()Object

removeBack()Object

peekFront()Object

peekBack()Object

isEmpty()bool

Spring 2024 Sacramento State - Cook - CSc 130 41

Deque Interface Deque Example

1. addFront('N')

2. addBack('E')

3. addFront('W')

4. addBack('D')

5. addFront('P')

N

E

W

P

D

Spring 2024 Sacramento State - Cook - CSc 130 42

37 38

39 40

41 42

8

 A deque can function as either a stack or queue

 "Add Front" operation can be used to "redo" or
"undo" a queue removal – remove then put it back
in line

 There are some scenarios where this logic is

needed

Deque Advantages

Spring 2024 Sacramento State - Cook - CSc 130 43

 While, Stacks/Queues can be created with a

single-linked-list, a Deque requires a double-

linked-list

 …otherwise, removing items from the end would

require O(n) – even with a tail node

 Also, the link overhead (memory requirements) is

doubled

Deque Disadvantages

Spring 2024 Sacramento State - Cook - CSc 130 44

Double Linked

List

Single

Linked List

Resizable

Array
Fixed Array Operation

O(1)O(1)O(n)O(1)addFront()

O(1)O(1)O(n)O(1)addBack()

O(1)O(1)O(n)O(1)removeFront()

O(1)O(n)O(n)O(1)removeBack()

Spring 2024 Sacramento State - Cook - CSc 130 45

Deque Summary

Queues &

Stacks in

Practice

1001 Uses!
(I meant 1,001 – not 9)

 HTML is a hierarchical

structure

 HTML consists of tags

• each tag can also embed other

tags

• allows text to be aligned, made

bold, etc…

HTML Tag Matching

Spring 2024 Sacramento State - Cook - CSc 130 47

 Web browsers read the text and apply a tag

depending if it is active

 They maintain a stack…

• push a start tag, pop and end tag

• if the HTML is correct, they should match

• … with the exception of the unary tags

HTML Tag Matching

Spring 2024 Sacramento State - Cook - CSc 130 48

43 44

45 46

47 48

9

HTML Tag Matching

Spring 2024 Sacramento State - Cook - CSc 130 49

<html>

<body>

<center>

<h1>Banks of Sacramento</h1>

</center>

<i>A bully ship and a bully crew.

Hoo-da! Hoo-da!

A bully mate and a captain too.

Hoo-da! Hoo-da-day!

And it's blow, ye winds, blow,

for Californi-o.

For there's plenty of gold,

so I've been told,

on the banks of the
Sacramento.</i>

</body>

</html>

Banks of Sacramento

A bully ship and a bully crew.

Hoo-da! Hoo-da!

A bully mate and a captain too.

Hoo-da! Hoo-da-day!

Then blow, ye winds, blow,

for Californi-o.

For there's plenty of gold,

so I've been told,

on the banks of the Sacramento.

Balanced Parentheses

Spring 2024 Sacramento State - Cook - CSc 130 50

 When analyzing arithmetic
expressions often the
structure of the expression
needs to be checked

 For example:

• are operators in the correct
place?

• are the parenthesis balanced?

 Let's look at parenthesis

 One approach…

• can we just use a "parenthesis count"

• if it isn't 0 at the end then the expression is invalid

 Sorry, it won't work…

• some expressions allow { } and []

• …and they may be in the wrong place

Balanced Parentheses

Spring 2024 Sacramento State - Cook - CSc 130 51

 A great solution is a stack

 Approach…

• push each (and pop each)

• at the end, the stack should be empty

• also, if you attempt to pop on an empty stack, the
expression is invalid

 It can also catch mismatched symbols

Spring 2024 Sacramento State - Cook - CSc 130 52

Balanced Parentheses

Balanced Parenthesis Examples

(a + b)

(a + b))

) a + b (

(a + (b + 1) * c) / e

Balanced

Pop empty stack

Pop empty stack

Balanced

(a * (b + ((d + e) * f)) Stack has 1 left

Spring 2024 Sacramento State - Cook - CSc 130 53

Balanced Parenthesis Examples

[a + b]

(a + b}

{[a + b }]

(a + (b + 1) * c / e

Balanced

Mismatch

Mismatch

Unbalanced

(a * [b + {c + d} * e]) Balanced

Spring 2024 Sacramento State - Cook - CSc 130 54

49 50

51 52

53 54

10

Evaluating

Expressions

A Stack and Queue working together!

 It is a common task in
programs to evaluate
mathematical expressions
and get a result

 Computers can perform this
task using an algorithm
created by Dijkstra, but we
will get into that later

Evaluating Expressions

Spring 2024 Sacramento State - Cook - CSc 130 56

 First, we need to look at

mathematical expressions

 We usually use infix notation

• not stack or queue "friendly"

• there are, however, two

alternative notations

• one of which is stack friendly

Evaluating Expressions

Spring 2024 Sacramento State - Cook - CSc 130 57

Infix Notation

Spring 2024 Sacramento State - Cook - CSc 130 58

 Using infix notation, we put the operator in

between the two operands

 This is the standard format used today

a + b

a / b

To add the numbers a and b, we type:

To divide a by b, we type:

Prefix Notation

Spring 2024 Sacramento State - Cook - CSc 130 59

 Prefix notation, rather than putting the operator between the
operands, puts it first

 It is also called "Polish Notation"

 Used by the LISP programming language

+ a b

/ a b

To add the numbers a and b, we type:

To divide a by b, we type:

Postfix Notation

Spring 2024 Sacramento State - Cook - CSc 130 60

 Postfix notation puts the operator at the end

 Also called "Reverse Polish Notation" (RPN)

 Since the operator is last, we can also use it as a "trigger" to
perform math

To add the numbers a and b, we type: a b +

To divide a by b, we type: a b /

55 56

57 58

59 60

11

PostfixPrefixInfix

a b c * ++ a * b ca + b * c

a b – c *- a b * c(a - b) * c

a b c - / d ++ / a - b c d(a / (b – c) + d)

a b c d - / ++ a / b - c d(a + b / (c – d))

Spring 2024 Sacramento State - Cook - CSc 130 61

Where are My Parenthesis?

 Infix is the only notation that

needs parentheses to

change precedence

 The order of operators

handles precedence in prefix
and postfix

Where are My Parenthesis?

Spring 2024 Sacramento State - Cook - CSc 130 62

 Computing a postfix expression
is easy

 All you need is:

• one queue that contains the
values & operators

• and one stack

 In fact, on classic Hewlett
Packard calculators, all
operations are stack based

Compute Postfix Algorithm

Spring 2024 Sacramento State - Cook - CSc 130 63

while there is data in the input queue

dequeue a token (value or operator)

if it's a value, push it on the stack

if it's an operator

pop two numbers from the stack

compute the result (using the operator)

push the result on the stack

end if

end while

...Afterwards, the final result is on the stack

Compute Postfix Pseudo-code

Spring 2024 Sacramento State - Cook - CSc 130 64

Compute Postfix Demo

24 10 -7 /

Stack

Input Queue +34

Spring 2024 Sacramento State - Cook - CSc 130 65

24 / (10 – 7) + 34

Compute Postfix Demo

24

10 -7 /

Stack

Input Queue +34

Spring 2024 Sacramento State - Cook - CSc 130 66

61 62

63 64

65 66

12

Compute Postfix Demo

24 10

-7 /

Stack

Input Queue +34

Spring 2024 Sacramento State - Cook - CSc 130 67

Compute Postfix Demo

24 10

-

7

/

Stack

Input Queue +34

Spring 2024 Sacramento State - Cook - CSc 130 68

3

Compute Postfix Demo

24

10 - 7

/

Stack

Input Queue +34

Spring 2024 Sacramento State - Cook - CSc 130 69

Compute Postfix Demo

24

/

Stack

Input Queue +34

Spring 2024 Sacramento State - Cook - CSc 130 70

3

24

Compute Postfix Demo

8/

Stack

Input Queue +34

Spring 2024 Sacramento State - Cook - CSc 130 71

3

Compute Postfix Demo

8Stack

Input Queue +34

Spring 2024 Sacramento State - Cook - CSc 130 72

67 68

69 70

71 72

13

Compute Postfix Demo

8Stack

Input Queue +

34

Spring 2024 Sacramento State - Cook - CSc 130 73

8 42

Compute Postfix Demo

Stack

Input Queue

+ 34

Spring 2024 Sacramento State - Cook - CSc 130 74

42

Compute Postfix Demo

Stack

Input Queue

Spring 2024 Sacramento State - Cook - CSc 130 75

 Why are learning this... be patient!

 Converting infix to either postfix or prefix notation is
easy to do by hand

 Did you notice that the operands did not change
order? They were always a, b, c…

 We just need to rearrange the operators

Converting to Prefix or Postfix

Spring 2024 Sacramento State - Cook - CSc 130 76

1. Make it a Fully Parenthesized Expression (FPE) -

one pair of parentheses enclosing each operator

and its operands

2. Move the operators to the start (prefix) or end

(postfix) of each sub-expression

3. Finally, remove all the parenthesis

Convert Infix to Prefix / Postfix

Spring 2024 Sacramento State - Cook - CSc 130 77

Infix to Postfix

a / (b - c) + d

((a / (b - c)) + d)1.

((a (b c -) /) d +)2.

a b c - / d +3.

Spring 2024 Sacramento State - Cook - CSc 130 78

73 74

75 76

77 78

14

Let the computer do the work…

Infix to Postfix

Algorithm

Edsger Dijkstra

Spring 2024 Sacramento State - Cook - CSc 130 80

 Edsger Dijkstra is a
World-famous computer
scientist

 He invented a wealth of
algorithms

 For his contributions, he
received the Turing
Award

 Infix expressions need to be

converted to postfix to be

evaluated

 Dijkstra's Shunting-yard

algorithm performs this task

Infix to Postfix Algorithm

Spring 2024 Sacramento State - Cook - CSc 130 81

Shunting-yard algorithm

Spring 2024 Sacramento State - Cook - CSc 130 82

 Named after railroad shunting

yards – which move trains

onto different tracks

 Dijkstra's solution uses an

input queue, operator stack,
and output queue

Shunting-yard Algorithm

Spring 2024 Sacramento State - Cook - CSc 130 83

Shunting-yard Algorithm

Spring 2024 Sacramento State - Cook - CSc 130 84

 The most basic version of this

algorithm requires Fully-

Parenthesized Expression

 This means, there is no

precedence and parenthesis
are put around every operator

79 80

81 82

83 84

15

while the input queue has tokens

read a token from the input queue

if the token is a…

operand : add it to output queue

operator : push it on the stack

'(' : push it onto the stack

')' :

while the top of stack isn't a '('

pop an operator

add it to the output queue

end while

pop and discard the extra '('

end if

end while

FPE Shunting-yard Algorithm

Spring 2024 Sacramento State - Cook - CSc 130 85

FPE Shunting-yard Algorithm

Operator Stack

Input Queue

Output Queue

((a * (b + c)) / d)

Spring 2024 Sacramento State - Cook - CSc 130 86

FPE Shunting-yard Algorithm

Operator Stack

Input Queue

Output Queue

Spring 2024 Sacramento State - Cook - CSc 130 87

*((a (+b c)) / d)

FPE Shunting-yard Algorithm

Operator Stack

Input Queue

Output Queue

Spring 2024 Sacramento State - Cook - CSc 130 88

*

(

(a (+b c)) / d)

FPE Shunting-yard Algorithm

Operator Stack

Input Queue

Output Queue

Spring 2024 Sacramento State - Cook - CSc 130 89

*

((

a (+b c)) / d)

FPE Shunting-yard Algorithm

Operator Stack

Input Queue

Output Queue

Spring 2024 Sacramento State - Cook - CSc 130 90

*

((

a

(+b c)) / d)

85 86

87 88

89 90

16

FPE Shunting-yard Algorithm

Operator Stack

Input Queue

Output Queue

Spring 2024 Sacramento State - Cook - CSc 130 91

*((

a

(+b c)) / d)

FPE Shunting-yard Algorithm

Operator Stack

Input Queue

Output Queue

Spring 2024 Sacramento State - Cook - CSc 130 92

*((

a

(

+b c)) / d)

FPE Shunting-yard Algorithm

Operator Stack

Input Queue

Output Queue

Spring 2024 Sacramento State - Cook - CSc 130 93

*((

a

(

+

b

c)) / d)

FPE Shunting-yard Algorithm

Operator Stack

Input Queue

Output Queue

Spring 2024 Sacramento State - Cook - CSc 130 94

*((

a

(+

b

c)) / d)

FPE Shunting-yard Algorithm

Operator Stack

Input Queue

Output Queue

Spring 2024 Sacramento State - Cook - CSc 130 95

*((

a

(+

b c

)) / d)

FPE Shunting-yard Algorithm

Operator Stack

Input Queue

Output Queue

Spring 2024 Sacramento State - Cook - CSc 130 96

*((

a

(+

b c

)

) / d)

91 92

93 94

95 96

17

FPE Shunting-yard Algorithm

Operator Stack

Input Queue

Output Queue

Spring 2024 Sacramento State - Cook - CSc 130 97

*((

a +b c

) / d)

FPE Shunting-yard Algorithm

Operator Stack

Input Queue

Output Queue

Spring 2024 Sacramento State - Cook - CSc 130 98

*((

a +b c

)

/ d)

FPE Shunting-yard Algorithm

Operator Stack

Input Queue

Output Queue

Spring 2024 Sacramento State - Cook - CSc 130 99

*

(

a +b c

/ d)

FPE Shunting-yard Algorithm

Operator Stack

Input Queue

Output Queue

Spring 2024 Sacramento State - Cook - CSc 130 100

*

(

a +b c

/

d)

FPE Shunting-yard Algorithm

Operator Stack

Input Queue

Output Queue

Spring 2024 Sacramento State - Cook - CSc 130 101

*

(

a +b c

/

d

)

FPE Shunting-yard Algorithm

Operator Stack

Input Queue

Output Queue

Spring 2024 Sacramento State - Cook - CSc 130 102

*

(

a +b c

/

d

)

97 98

99 100

101 102

18

FPE Shunting-yard Algorithm

Operator Stack

Input Queue

Output Queue

Spring 2024 Sacramento State - Cook - CSc 130 103

*a +b c /d

FPE Shunting-yard Algorithm

Operator Stack

Input Queue

Output Queue a b c + * d /

Spring 2024 Sacramento State - Cook - CSc 130 104

Too Many Paranthesis!

Spring 2024 Sacramento State - Cook - CSc 130 105

 FPE's are rarely used in real-

World examples

 In fact, we use precedence

rules to simplify expressions

 Fortunately, the algorithm can

be modified, very easily, to

handle precedence!

while the input queue has tokens

read a token from the input queue

if the token is a…

operand : add it to output queue

operator : new rules – see next slide

'(' : push it onto the stack

')' :

while the top of stack isn't a '('

pop an operator

add it to the output queue

end while

pop and discard the '('

end if

end while

Non-FPE Shunting-yard Algorithm

Spring 2024 Sacramento State - Cook - CSc 130 106

if operator is left-associative

while top of stack is ≥ operator and not a '('

pop the stack

add it to the output queue

end while

if operator is right-associative

while top of stack is > operator and not a '('

pop the stack

add it to the output queue

end while

push the operator onto the stack

Operator: New Rules

Spring 2024 Sacramento State - Cook - CSc 130 107

AssociativelyOperator

Left+ - * /

Right^ (exponent)

Spring 2024 Sacramento State - Cook - CSc 130 108

Operator Associatively

103 104

105 106

107 108

19

Shunting-yard Algorithm Example 1

Operator Stack

Input Queue

Output Queue

a - b * c + d

Spring 2024 Sacramento State - Cook - CSc 130 109

Shunting-yard Algorithm Example 1

Operator Stack

Input Queue

Output Queue

Spring 2024 Sacramento State - Cook - CSc 130 110

-a *b c + d

Shunting-yard Algorithm Example 1

Operator Stack

Input Queue

Output Queue

Spring 2024 Sacramento State - Cook - CSc 130 111

-

a

*b c + d

Shunting-yard Algorithm Example 1

Operator Stack

Input Queue

Output Queue

Spring 2024 Sacramento State - Cook - CSc 130 112

-

a

*b c + d

Shunting-yard Algorithm Example 1

Operator Stack

Input Queue

Output Queue

Spring 2024 Sacramento State - Cook - CSc 130 113

-

a

*

b

c + d

Shunting-yard Algorithm Example 1

Operator Stack

Input Queue

Output Queue

Spring 2024 Sacramento State - Cook - CSc 130 114

-

a

*

b

c + d

109 110

111 112

113 114

20

Shunting-yard Algorithm Example 1

Operator Stack

Input Queue

Output Queue

Spring 2024 Sacramento State - Cook - CSc 130 115

-

a

*

b c

+ d

Shunting-yard Algorithm Example 1

Operator Stack

Input Queue

Output Queue

Spring 2024 Sacramento State - Cook - CSc 130 116

-

a

*

b c

+

d

The precedence of * -

are both ≥ than +

Shunting-yard Algorithm Example 1

Operator Stack

Input Queue

Output Queue

Spring 2024 Sacramento State - Cook - CSc 130 117

-a *b c

+

d

Shunting-yard Algorithm Example 1

Operator Stack

Input Queue

Output Queue

Spring 2024 Sacramento State - Cook - CSc 130 118

-a *b c

+

d

Remaining stack

items pop'd

Shunting-yard Algorithm Example 1

Operator Stack

Input Queue

Output Queue

Spring 2024 Sacramento State - Cook - CSc 130 119

-a *b c +d

Shunting-yard Algorithm Example 1

Operator Stack

Input Queue

Output Queue a b c * - d +

Spring 2024 Sacramento State - Cook - CSc 130 120

115 116

117 118

119 120

21

Shunting-yard Algorithm Example 2

Operator Stack

Input Queue

Output Queue

a + (b – c * d) / e - f

Spring 2024 Sacramento State - Cook - CSc 130 121

Shunting-yard Algorithm Example 2

Operator Stack

Input Queue

Output Queue

Spring 2024 Sacramento State - Cook - CSc 130 122

+a -b c * d() / e - f

Shunting-yard Algorithm Example 2

Operator Stack

Input Queue

Output Queue

Spring 2024 Sacramento State - Cook - CSc 130 123

+

a

-b c * d() / e - f

Shunting-yard Algorithm Example 2

Operator Stack

Input Queue

Output Queue

Spring 2024 Sacramento State - Cook - CSc 130 124

+

a

-b c * d() / e - f

Shunting-yard Algorithm Example 2

Operator Stack

Input Queue

Output Queue

Spring 2024 Sacramento State - Cook - CSc 130 125

+

a

-b c * d

(

) / e - f

Shunting-yard Algorithm Example 2

Operator Stack

Input Queue

Output Queue

Spring 2024 Sacramento State - Cook - CSc 130 126

+

a

-

b

c * d

(

) / e - f

121 122

123 124

125 126

22

Shunting-yard Algorithm Example 2

Operator Stack

Input Queue

Output Queue

Spring 2024 Sacramento State - Cook - CSc 130 127

+

a

-

b

c * d

(

) / e - f

Shunting-yard Algorithm Example 2

Operator Stack

Input Queue

Output Queue

Spring 2024 Sacramento State - Cook - CSc 130 128

+

a

-

b c

* d

(

) / e - f

Shunting-yard Algorithm Example 2

Operator Stack

Input Queue

Output Queue

Spring 2024 Sacramento State - Cook - CSc 130 129

+

a

-

b c

*

d

(

) / e - f

Shunting-yard Algorithm Example 2

Operator Stack

Input Queue

Output Queue

Spring 2024 Sacramento State - Cook - CSc 130 130

+

a

-

b c

*

d

(

) / e - f

Shunting-yard Algorithm Example 2

Operator Stack

Input Queue

Output Queue

Spring 2024 Sacramento State - Cook - CSc 130 131

+

a

-

b c

*

d

()

/ e - f

Shunting-yard Algorithm Example 2

Operator Stack

Input Queue

Output Queue

Spring 2024 Sacramento State - Cook - CSc 130 132

+

a -b c *d

/ e - f

127 128

129 130

131 132

23

Shunting-yard Algorithm Example 2

Operator Stack

Input Queue

Output Queue

Spring 2024 Sacramento State - Cook - CSc 130 133

+

a -b c *d

/

e - f

Shunting-yard Algorithm Example 2

Operator Stack

Input Queue

Output Queue

Spring 2024 Sacramento State - Cook - CSc 130 134

+

a -b c *d

/

e

- f

Shunting-yard Algorithm Example 2

Operator Stack

Input Queue

Output Queue

Spring 2024 Sacramento State - Cook - CSc 130 135

+

a -b c *d

/

e

-

f

+ / are both

≥ than -

Shunting-yard Algorithm Example 2

Operator Stack

Input Queue

Output Queue

Spring 2024 Sacramento State - Cook - CSc 130 136

+a -b c *d /e

-

f

Shunting-yard Algorithm Example 2

Operator Stack

Input Queue

Output Queue

Spring 2024 Sacramento State - Cook - CSc 130 137

+a -b c *d /e

-

f

Remaining stack

items pop'd

Shunting-yard Algorithm Example 2

Operator Stack

Input Queue

Output Queue

Spring 2024 Sacramento State - Cook - CSc 130 138

+a -b c *d /e -f

133 134

135 136

137 138

24

Shunting-yard Algorithm Example 2

Operator Stack

Input Queue

Output Queue a b c d * - e / + f -

Spring 2024 Sacramento State - Cook - CSc 130 139

Testing Our Result

a + (b - c * d) / e - f

((a + ((b - (c * d)) / e)) – f)1.

((a ((b (c d *) -) e /) +) f –)2.

a b c d * - e / + f –3.

Spring 2024 Sacramento State - Cook - CSc 130 140

139 140

