
1

Recursion

Part 4 How they work

Program

Structure

Program Structure

Spring 2024 Sacramento State - Cook - CSc 130 3

 When writing a program, you

must be aware how it works

"behinds the scenes"

 In particular, you must

understand memory and how
it is used.

Program Structure

Spring 2024 Sacramento State - Cook - CSc 130 4

 There are possible issues

that can arise that can

negatively impact your
programs

 … and possibly make them
unresponsive

 When you call a function, you can specify pieces of
data called arguments

 These match the format of the function – which is
specified in its parameters

 Basically

• arguments are passed to the parameters

• they match, in order, on a one-to-one basis

• arguments  parameters

Spring 2024 Sacramento State - Cook - CSc 130 5

Some Terminology Scope

Spring 2024 Sacramento State - Cook - CSc 130 6

 Scope refers how a

variable/function is bound (i.e.

visible to the rest of your
program)

 Data is often stored
differently, based on its scope

1 2

3 4

5 6

2

Global Variables

Spring 2024 Sacramento State - Cook - CSc 130 7

 You can declare variables

outside functions

 This are visible to all

functions in the class (or

module)

 These are known as global

variables

int total;

void printTotal()

{

System.out.println(total);

}

int main()

{

total = 1000;

...

Global Variables

Visible to all functions!

Spring 2024 Sacramento State - Cook - CSc 130 8

Global Variables

Spring 2024 Sacramento State - Cook - CSc 130 9

 They can be useful for sharing
data between functions

 However, it can be problematic

• variables can be modified in ways

that cause side effects in your

program

• it is better to use local variables

and pass them to other functions

Local Variables

Spring 2024 Sacramento State - Cook - CSc 130 10

 When you create functions,

each can have local variables

 These are only "visible" to the

function in which they are

declared

 So, other functions cannot

access them

Variable Scope

Spring 2024 Sacramento State - Cook - CSc 130 11

 Different functions can have
local variables with the same
name

 Why?

• they can't "see" each other

• they are different variables,
anyway

• … so, there is no problem

int hello()

{

int x;

}

int main()

{

int x;

}

Variable Scopes

Not the same variable

Spring 2024 Sacramento State - Cook - CSc 130 12

7 8

9 10

11 12

3

int hello()

{

double x;

}

int main()

{

int x;

}

Variable Scopes

Don't have to be the

same type
(they are different variables)

Spring 2024 Sacramento State - Cook - CSc 130 13

double average(double a, double b)

{

double avg;

avg = (a + b) / 2;

return avg;

}

Example: Average Function

Parameters are also

local variables

Spring 2024 Sacramento State - Cook - CSc 130 14

Making the Functions Function & Data Delightful

The System

Stack & Heap

The System Stack & Heap

Spring 2024 Sacramento State - Cook - CSc 130 16

 Computers maintain two

types of memory for running

programs: The Stack and The
Heap

 Each has a specific purpose,
and, in tandem, they make

modern programs possible

The System Stack & Heap

Spring 2024 Sacramento State - Cook - CSc 130 17

 Each is stored in your

computer's main

memory

 They grow "towards"
each other (and,
hopefully, will never

meet)

Heap

Stack

The System Stack

Spring 2024 Sacramento State - Cook - CSc 130 18

 The System Stack is used to

store local variables and

allow your program to support
functions

 So, anytime you call a
function or declare a local

variable, a stack is used

13 14

15 16

17 18

4

The System Stack

Spring 2024 Sacramento State - Cook - CSc 130 19

 Each time a function calls

another function an Activation

Record is placed on the stack

 It contains all the information

that the instance of a function
requires

 The Activation Record contains:

• parameters

• local variables

• return address (used by the processor)

 Data in an activation record is temporary to that
"instance" of a function

 In other words, data does not persist after the function
ends

Contents of the Activation Record

Spring 2024 Sacramento State - Cook - CSc 130 20

 Because the stack is a First-In-Last-Out structure,

it allows function nesting

 And even a more powerful concept – recursion

 Examples

• web browser "back button"

• undo sequence in a text editor

Spring 2024 Sacramento State - Cook - CSc 130 21

The Power of Stacks

21

Nesting Activation Records

Spring 2024 Sacramento State - Cook - CSc 130 22

 For example:

• main() calls a()

• a() calls b()

• b() calls c()

• c() calls d()

 Each activation record is
pushed onto the stack

Stack

a() activation record

b() activation record

c() activation record

d() activation record

Nesting Activation Records

Spring 2024 Sacramento State - Cook - CSc 130 23

 When a function
"returns", its activation
record is pop'd and
discarded

 The local variables
cease to exist

 Only the return value is
passed to the caller

Stack

a() activation record

b() activation record

c() activation record

d() activation record

The Heap

Spring 2024 Sacramento State - Cook - CSc 130 24

 Nothing on the system stack

persists forever – it is quite

temporary

 So, how do we make data

last indefinitely? …or, as long
as our program is active

19 20

21 22

23 24

5

The Heap

Spring 2024 Sacramento State - Cook - CSc 130 25

 The Heap is used to store

dynamic allocation

 It is allocated as needed

 … not to be confused with the
Heap Data Structure (which

we will cover later)

 Anytime you create objects using "new"…

• the heap is used to allocate storage

• system performs garbage collection after the memory is

no longer needed

 Unlike the stack, data persists regardless of

function calls

The Heap

Spring 2024 Sacramento State - Cook - CSc 130 26

The objective of Object Oriented Programs

Reference Types

 Most languages are based on

largely based on building

abstract data types called
reference types

 They are links to nebulous
objects – whose contents &

implementation are unknown

Reference Types

Spring 2024 Sacramento State - Cook - CSc 130 28

 This is known as object-

oriented programming

 … and is the basis of all

modern programming

languages

Reference Types

Spring 2024 Sacramento State - Cook - CSc 130 29

Reference Types

Spring 2024 Sacramento State - Cook - CSc 130 30

 So, local variables

exist on the stack

 But... they reference

(contain the address

of) objects stored on
the system heap

Heap

Stack

Object

Variable

1

25 26

27 28

29 30

6

Reference Types

Spring 2024 Sacramento State - Cook - CSc 130 31

 This allows multiple variables

to point to the same object

 This is called aliasing

 The system keeps track of
how many references each

object has

Heap

Stack

Object

Variable Variable

12

Garbage Collection

Spring 2024 Sacramento State - Cook - CSc 130 32

 Programming languages use

garbage collection reclaim

unused data from the heap

 Policy is to reclaim the
memory used by objects that
can no longer be accessed

(i.e. no references)

Garbage Collection

Spring 2024 Sacramento State - Cook - CSc 130 33

 So, languages maintain a
counter on each object

• if you add a reference, it
increments

• if a reference is removed, it
decrements

 When it reaches zero, the
object can be removed

Loitering

Spring 2024 Sacramento State - Cook - CSc 130 34

 It is possible to "remove" an

item from the ADT, but

accidently keep a reference
(link) to it

 The item is effectively an
orphan - it will be never be

accessed again by the ADT

Loitering

Spring 2024 Sacramento State - Cook - CSc 130 35

 The garbage collector has no
way to know unless it's
overwritten

 So, under this condition, the
object is said to loiter – stay
in memory with no purpose

 This can negatively affect
performance

Array Storing a List (partially filled)

Harry GinnyHermione Ron Dobby

Start End

Spring 2024 Sacramento State - Cook - CSc 130 36

31 32

33 34

35 36

7

Delete Last – Move End

Harry GinnyHermione Ron Dobby

Start End

Spring 2024 Sacramento State - Cook - CSc 130 37

Dobby is still linked…

Harry GinnyHermione Ron Dobby

Start End

Spring 2024 Sacramento State - Cook - CSc 130 38

Still linked from

array. So, it
loiters.

Pools

Okay, now it's getting weird

Pools

Spring 2024 Sacramento State - Cook - CSc 130 40

 Creating and destroying

objects is expensive on the

heap

 So, we want to minimize the

constant creation and
deletion of new nodes

 Arrays can be wasteful …

• in space – when there are partially

• in time – created and destroyed frequently

 Linked lists can be wasteful…

• require memory to be allocated each time a node is

created

• puts a lot of work on the heap

Why?

Spring 2024 Sacramento State - Cook - CSc 130 41

 One solution is to maintain a

pool

 This is a collection of nodes

that are allocated early and

are used as, kind of, a
recycling bin

Jump in the Pool

Spring 2024 Sacramento State - Cook - CSc 130 42

37 38

39 40

41 42

8

 If a node is needed, one is

removed from the pool

 If a node is removed, and the

array has room, it is placed
back in the array (after the
data field is set to null, of

course)

Jump in the Pool

Spring 2024 Sacramento State - Cook - CSc 130 43

 You can also use a "pool" for linked lists

 So, your Linked List class

• would have a linked list of valid nodes

• and another list of unused notes

• the danger here is that you don't limit the size of the

pool – and it grows forever

• so, if you use two linked lists, keep a pool member count

Even more approaches

Spring 2024 Sacramento State - Cook - CSc 130 44

Linked List with a List Pool

Spring 2024 Sacramento State - Cook - CSc 130 45

A CB D

Head Tail

Pool

List node
chain

Pool node
chain

Delete Head: Remove Node (1 of 3)

Spring 2024 Sacramento State - Cook - CSc 130 46

A CB D

Head Tail

Pool

Delete Head: Link (2 of 3)

Spring 2024 Sacramento State - Cook - CSc 130 47

A

CB D

Head Tail

Pool

Delete Head: Clear Value (3 of 3)

Spring 2024 Sacramento State - Cook - CSc 130 48

CB D

Head Tail

Pool

43 44

45 46

47 48

9

Add Head: Remove from Pool (1 of 3)

Spring 2024 Sacramento State - Cook - CSc 130 49

B DC E

Head Tail

Pool

Add Head: Link (2 of 3)

Spring 2024 Sacramento State - Cook - CSc 130 50

B DC E

Head Tail

Pool

Add Head: Set Value (3 of 3)

Spring 2024 Sacramento State - Cook - CSc 130 51

B DC E

Head Tail

A

Pool

Recursion

The best way to learn recursion…

is to, first, learn recursion!

 Recursion occurs when a

function directly or indirectly

calls itself

 This results in a loop

 However, it doesn't use

iterative structures such as

For or While loops

Recursion

Spring 2024 Sacramento State - Cook - CSc 130 53

 This can greatly simply
programming tasks

 Commonly used to traverse a
graph, tree, or run complex
calculations

 While powerful, it is costly on
computer resources

 …and can also create pitfalls

Recursion

Spring 2024 Sacramento State - Cook - CSc 130 54

49 50

51 52

53 54

10

 Sorting

 Searching

 Shortest paths in a graph

 Minimum spanning tree

 Primality testing

Some Well-known Problems

Spring 2024 Sacramento State - Cook - CSc 130 55

 Traveling salesman problem

 Knapsack problem

 Chess

 Towers of Hanoi

 Program termination

Some Well-known Problems

Spring 2024 Sacramento State - Cook - CSc 130 56

 Recursion allows a problem to be broken down into

smaller instances of themselves

 Each call will represent a smaller, simpler, version
of the same problem

 Eventually, it will reach a "base case" which will not

require any more recursive calls

Breaking a Problem Down

Spring 2024 Sacramento State - Cook - CSc 130 57

 When the program can be broken into smaller
pieces, recursion is a great solution

 Examples:

• graph traversal – searching, etc….

• state machines

• sorting

• many math problems

Where Recursion Shines

Spring 2024 Sacramento State - Cook - CSc 130 58

 If you break down a task into
smaller parts… at some point,
it should become a single
value

 If not, the function will never
end and will recurse forever –
at least until the computer
runs out of resources

Danger: Never Ending

Spring 2024 Sacramento State - Cook - CSc 130 59

 Accidental recursion is a
common mistake by beginner
programmers

 Recursion can be done
directly or indirectly

• for example: A calls B, B calls
C, C calls A

• organize your code carefully!

Danger: Accidental Recursion

Spring 2024 Sacramento State - Cook - CSc 130 60

55 56

57 58

59 60

11

 Runaway recursion

• function will recurse forever

• eventually all memory is

exhausted

 You will see either…

• "stack overflow" error

• "heap exhaustion" error

Results of These Dangers…

Spring 2024 Sacramento State - Cook - CSc 130 61

void toInfinity()

{

System.out.println("To infinity!");

toInfinity();

System.out.println("and beyond!");

}

To infinity… but not beyond

We never get here!

Spring 2024 Sacramento State - Cook - CSc 130 62

 Does the problem lend itself to recursion?

• can the problem be broken down into smaller instances

of itself?

• is there a iterative version that is better

 Is there a base case?

• is there a case where recursion will stop?

• remember: ALWAYS have a stopping point!

Designing a Recursive Function

Spring 2024 Sacramento State - Cook - CSc 130 63

Examples of

Recursion

Examples defined as examples defined as

examples…

Example 1: Quagmire

Spring 2024 Sacramento State - Cook - CSc 130 66

 Glen Quagmire is a character
on the show Family Guy

 Besides his (almost illegal)
antics, he is known for his
catch phrase "Giggity goo!"

 The number of times he says
"giggity" varies depending on
the situation

61 62

63 64

65 66

12

Example 1: Quagmire

Spring 2024 Sacramento State - Cook - CSc 130 67

 We can solve this recursively

 If we look at "giggity giggity
goo!", we can observe that it
is "giggity" + "giggity goo!"

 We can print his catch phrase

using recursion.

public void quagmire(int count)

{

if (count == 0)

{

System.out.print("goo!");

}

else

{

System.out.print("giggity ");

quagmire(count – 1);

}

}

Example 1: Quagmire method

Spring 2024 Sacramento State - Cook - CSc 130 68

Base case

Recursive case

public String quagmire(int count)

{

if (count == 0)

{

return "goo!";

}

else

{

return "giggity " + quagmire(count - 1);

}

}

Example 1: Quagmire – return a String

Spring 2024 Sacramento State - Cook - CSc 130 69

Base case

Recursive case

public static void main(String[] args)

{

System.out.println(quagmire(1));

System.out.println(quagmire(2));

System.out.println(quagmire(5));

}

Example 1: Quagmire

Spring 2024 Sacramento State - Cook - CSc 130 70

giggity goo!

giggity giggity goo!

giggity giggity giggity giggity giggity goo!

Example 1: Output

Spring 2024 Sacramento State - Cook - CSc 130 71

Example 2: Factorials

Spring 2024 Sacramento State - Cook - CSc 130 72

 Factorials are classic
mathematical problem that
lends itself easily to recursion

 If you don't remember, a
factorial of n is defined as the
value of n multiplied by all
lesser integers ≥ 1

 Eg: 5!  5×4×3×2×1  120

67 68

69 70

71 72

13

 It should be easy to observe that n! can be defined

as n × (n – 1)!

 So, n! can be computed by multiplying n by the

factorial of one less than it

 4!  4 × 3!  4 × 3 × 2!  4 × 3 × 2 × 1

Example 2: Factorials

Spring 2024 Sacramento State - Cook - CSc 130 73

int factorial(int n)

{

if (n == 1)

{

return 1;

}

else

{

return n * factorial(n – 1);

}

}

Example 2: Factorials

Spring 2024 Sacramento State - Cook - CSc 130 74

Base case

Recursive case

Example 2: Factorial

Spring 2024 Sacramento State - Cook - CSc 130 75

4 * factorial(3)

factorial(4)

1

3 * factorial(2)

factorial(3)

2 * factorial(1)

factorial(2)

1

factorial(1)

Base case

2

6

24

public static void main(String[] args)

{

System.out.println(factorial(4));

System.out.println(factorial(7));

System.out.println(factorial(12));

}

Example 2: Factorials

Spring 2024 Sacramento State - Cook - CSc 130 76

24

5040

479001600

Example 4: Output

Spring 2024 Sacramento State - Cook - CSc 130 77

Yes, it grows

quickly!

 Euclid created an ingenious

algorithm for finding the

greatest common divisor

 This is known example of
recursion – first solved using
geometry using the metaphor

of a tile floor

Example 3: Greatest Common Divisor

Spring 2024 Sacramento State - Cook - CSc 130 78

73 74

75 76

77 78

14

 A common problem in

computer science is finding

the greatest common divisor
or two integers

 For example:
the GCD of 64 and 40 is 8

Example 3: Greatest Common Divisor

Spring 2024 Sacramento State - Cook - CSc 130 79

gcd(n, m)  gcd(m, n mod m)

Example 3: Euclid’s Algorithm

Spring 2024 Sacramento State - Cook - CSc 130 80

 Euclid's algorithm is recursive

 You reapply the expression below until the second
value of gcd(n, m) is zero.

 In this case, n will be the GCD

 60 and 24

• gcd(60, 24)  gcd(24,12)  gcd(12, 0)

• the result is 12

 84 and 20

• gcd(84, 20)  gcd(20, 4)  gcd(4, 0)

• result is 4

 These might seem trivial, but it can find HUGE
numbers quite easily

Example 3: Greatest Common Divisor

Spring 2024 Sacramento State - Cook - CSc 130 81

int gcd(int n, int m)

{

if (m == 0)

{

return n;

}

else

{

return gcd(m, n % m);

}

}

Spring 2024 Sacramento State - Cook - CSc 130 82

public static void main(String[] args)

{

System.out.println(gcd(10, 95));

System.out.println(gcd(187, 51));

System.out.println(gcd(240, 36));

}

Example 3: Greatest Common Divisor

Spring 2024 Sacramento State - Cook - CSc 130 83

5

17

12

Example 3: Output

Spring 2024 Sacramento State - Cook - CSc 130 84

79 80

81 82

83 84

15

Example 4: Fibonacci Numbers

Spring 2024 Sacramento State - Cook - CSc 130 85

 Rabbits tend to reproduce

like… well… rabbits

 Mathematician Fibonacci

analyzed this situation and
created a mathematical
system to predict this

phenomena

Example 4: Fibonacci Numbers

Spring 2024 Sacramento State - Cook - CSc 130 86

 It is used today in finance,

simulation, and several

computer science algorithms

 As you get see with the

picture, it seems to be built
into nature itself

 The problem:

• start with a pair of rabbits

• at month #2, the rabbits begin to reproduce

• the female gives birth to a new pair of rabbits: one male and
one female

• babies mature at the same rate and will have more babies

 Fibonacci number sequences predict the total pairs
after n months

Example 4: Fibonacci Numbers

Spring 2024 Sacramento State - Cook - CSc 130 87

 The problem:

• start with a pair of rabbits

• at month #2, the rabbits begin to reproduce

• the female gives birth to a new pair of rabbits: one male and
one female

• babies mature at the same rate and will have more babies

 Fibonacci number sequences predict the total pairs
after n months

Example 4: Fibonacci Numbers

Spring 2024 Sacramento State - Cook - CSc 130 88

if n == 1 then Fib(n) = 1

if n == 2 then Fib(n) = 1

if n > 2 then Fib(n) = Fib(n-2) + Fib(n-1)

Example 4: Fibonacci Numbers

 After two months, the female gives birth creating a new pair….
then they get pregnant again!

 This continues forever…..

 Sequence: 1, 1, 2, 3, 5, 8, 13, 21, 34, ...

Spring 2024 Sacramento State - Cook - CSc 130 89

f(3) = f(2) + f(1) = 1 + 1 = 2

f(4) = f(3) + f(2) = 2 + 1 = 3

f(5) = f(4) + f(3) = 3 + 2 = 5

f(6) = f(5) + f(4) = 5 + 3 = 8

Example 4: Fibonacci Numbers

Spring 2024 Sacramento State - Cook - CSc 130 90

85 86

87 88

89 90

16

int fibonacci(int n)

{

if (n <= 2)

{

return 1;

}

else

{

return fibonacci(n - 2) + fibonacci(n - 1);

}

}

Example 4: Fibonacci Numbers

Spring 2024 Sacramento State - Cook - CSc 130 91

Recursion:

2 different paths!

public static void main(String[] args)

{

System.out.println(fibonacci(1));

System.out.println(fibonacci(8));

System.out.println(fibonacci(12));

}

Example 4: Fibonacci Numbers

Spring 2024 Sacramento State - Cook - CSc 130 92

1

13

89

Example 4: Output

Spring 2024 Sacramento State - Cook - CSc 130 93

 Linked Lists can also be

recursively defined

 Every list can be seen as
collection of smaller lists

 So, recursion (while not

recommended) is possible

Example: Linked Lists

Spring 2024 Sacramento State - Cook - CSc 130 94

Recursive Sum

Spring 2024 Sacramento State - Cook - CSc 130 95

42

Head Tail

13 47 95 11 53

Smaller Sublist

Recursion Example: Sum

Spring 2024 Sacramento State - Cook - CSc 130 96

 Recursion usually happens in

the recursively defined

structure itself

 In other words, for linked lists,

the recursion will happen in
the node

91 92

93 94

95 96

17

Recursive Sum

Spring 2024 Sacramento State - Cook - CSc 130 97

42

Head Tail

13 47 95 11 53

42 Sum of this sub-list+

Recursive Sum

Spring 2024 Sacramento State - Cook - CSc 130 98

42

Head Tail

13 47 95 11 53

42 Sum of this sub-list+ 13 +

double sum()

{

if (this.next == null)

{

return this.value;

}

else

{

return this.value + this.next.sum();

}

}

Sum Example (in the node class)

Base case (end of the list)

Spring 2024 Sacramento State - Cook - CSc 130 99

Recursion on
smaller list

97 98

99

