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Recursion

Part 4 How they work

Program 

Structure

Program Structure
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 When writing a program, you 

must be aware how it works 

"behinds the scenes"

 In particular, you must 

understand memory and how 
it is used.

Program Structure
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 There are possible issues 

that can arise that can 

negatively impact your 
programs

 … and possibly make them 
unresponsive

 When you call a function, you can specify pieces of 
data called arguments

 These match the format of the function – which is 
specified in its parameters

 Basically 

• arguments are passed to the parameters

• they match, in order, on a one-to-one basis

• arguments  parameters
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Some Terminology Scope
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 Scope refers how a 

variable/function is bound (i.e. 

visible to the rest of your 
program)

 Data is often stored 
differently, based on its scope
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Global Variables
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 You can declare variables 

outside functions

 This are visible to all 

functions in the class (or 

module)

 These are known as global 

variables

int total;

void printTotal()

{ 

System.out.println(total);

}

int main()

{

total = 1000;

...

Global Variables

Visible to all functions!

Spring 2024 Sacramento State - Cook - CSc 130 8

Global Variables
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 They can be useful for sharing 
data between functions

 However, it can be problematic

• variables can be modified in ways 

that cause side effects in your 

program

• it is better to use local variables 

and pass them to other functions

Local Variables
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 When you create functions, 

each can have local variables

 These are only "visible" to the 

function in which they are 

declared

 So, other functions cannot 

access them

Variable Scope
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 Different functions can have 
local variables with the same 
name

 Why?

• they can't "see" each other

• they are different variables, 
anyway

• … so, there is no problem

int hello()

{ 

int x;

}

int main()

{

int x;

}

Variable Scopes

Not the same variable
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int hello()

{ 

double x;

}

int main()

{

int x;

}

Variable Scopes

Don't have to be the 

same type
(they are different variables)
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double average(double a, double b)

{ 

double avg;

avg = (a + b) / 2;

return avg;

}

Example: Average Function

Parameters are also 

local variables
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Making the Functions Function & Data Delightful

The System 

Stack & Heap

The System Stack & Heap
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 Computers maintain two 

types of memory for running 

programs: The Stack and The 
Heap

 Each has a specific purpose, 
and, in tandem, they make 

modern programs possible

The System Stack & Heap
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 Each is stored in your 

computer's main 

memory

 They grow "towards" 
each other (and, 
hopefully, will never 

meet)

Heap

Stack

The System Stack
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 The System Stack is used to 

store local variables and 

allow your program to support 
functions

 So, anytime you call a 
function or declare a local 

variable, a stack is used

13 14

15 16

17 18



4

The System Stack
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 Each time a function calls 

another function an Activation 

Record is placed on the stack

 It contains all the information 

that the instance of a function 
requires

 The Activation Record contains:

• parameters 

• local variables

• return address (used by the processor)

 Data in an activation record is temporary to that 
"instance" of a function

 In other words, data does not persist after the function 
ends

Contents of the Activation Record
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 Because the stack is a First-In-Last-Out structure, 

it allows function nesting

 And even a more powerful concept – recursion

 Examples

• web browser "back button"

• undo sequence in a text editor
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The Power of Stacks

21

Nesting Activation Records

Spring 2024 Sacramento State - Cook - CSc 130 22

 For example:

• main() calls a()

• a() calls b()

• b() calls c()

• c() calls d()

 Each activation record is 
pushed onto the stack

Stack

a() activation record

b() activation record

c() activation record

d() activation record

Nesting Activation Records
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 When a function 
"returns", its activation 
record is pop'd and 
discarded

 The local variables 
cease to exist

 Only the return value is 
passed to the caller

Stack

a() activation record

b() activation record

c() activation record

d() activation record

The Heap

Spring 2024 Sacramento State - Cook - CSc 130 24

 Nothing on the system stack 

persists forever – it is quite 

temporary

 So, how do we make data 

last indefinitely? …or, as long 
as our program is active
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The Heap

Spring 2024 Sacramento State - Cook - CSc 130 25

 The Heap is used to store 

dynamic allocation

 It is allocated as needed

 … not to be confused with the 
Heap Data Structure (which 

we will cover later)

 Anytime you create objects using "new"…

• the heap is used to allocate storage

• system performs garbage collection after the memory is 

no longer needed

 Unlike the stack, data persists regardless of 

function calls

The Heap

Spring 2024 Sacramento State - Cook - CSc 130 26

The objective of Object Oriented Programs

Reference Types

 Most languages are based on 

largely based on building 

abstract data types called 
reference types

 They are links to nebulous 
objects – whose contents & 

implementation are unknown

Reference Types
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 This is known as object-

oriented programming

 … and is the basis of all 

modern programming 

languages

Reference Types
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Reference Types
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 So, local variables 

exist on the stack

 But... they reference 

(contain the address 

of) objects stored on 
the system heap

Heap

Stack

Object

Variable

1
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Reference Types
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 This allows multiple variables 

to point to the same object

 This is called aliasing

 The system keeps track of 
how many references each 

object has

Heap

Stack

Object

Variable Variable

12

Garbage Collection
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 Programming languages use  

garbage collection reclaim 

unused data from the heap

 Policy is to reclaim the 
memory used by objects that 
can no longer be accessed 

(i.e. no references)

Garbage Collection
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 So, languages maintain a 
counter on each object

• if you add a reference, it 
increments

• if a reference is removed, it 
decrements

 When it reaches zero, the 
object can be removed

Loitering
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 It is possible to "remove" an 

item from the ADT, but 

accidently keep a reference 
(link) to it

 The item is effectively an 
orphan - it will be never be 

accessed again by the ADT

Loitering
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 The garbage collector has no 
way to know unless it's 
overwritten

 So, under this condition, the 
object is said to loiter – stay 
in memory with no purpose

 This can negatively affect 
performance

Array Storing a List (partially filled)

Harry GinnyHermione Ron Dobby

Start End
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Delete Last – Move End

Harry GinnyHermione Ron Dobby

Start End
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Dobby is still linked…

Harry GinnyHermione Ron Dobby

Start End
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Still linked from 

array. So, it 
loiters.

Pools

Okay, now it's getting weird

Pools
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 Creating and destroying 

objects is expensive on the 

heap

 So, we want to minimize the 

constant creation and 
deletion of new nodes

 Arrays can be wasteful …

• in space – when there are partially

• in time – created and destroyed frequently

 Linked lists can be wasteful…

• require memory to be allocated each time a node is 

created

• puts a lot of work on the heap

Why?
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 One solution is to maintain a 

pool

 This is a collection of nodes 

that are allocated early and 

are used as, kind of, a 
recycling bin

Jump in the Pool
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 If a node is needed, one is 

removed from the pool

 If a node is removed, and the 

array has room, it is placed 
back in the array (after the 
data field is set to null, of 

course)

Jump in the Pool
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 You can also use a "pool" for linked lists

 So, your Linked List class 

• would have a linked list of valid nodes

• and another list of unused notes

• the danger here is that you don't limit the size of the 

pool – and it grows forever

• so, if you use two linked lists, keep a pool member count

Even more approaches
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Linked List with a List Pool
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A CB D

Head Tail

Pool

List node 
chain

Pool node 
chain

Delete Head: Remove Node (1 of 3)

Spring 2024 Sacramento State - Cook - CSc 130 46

A CB D

Head Tail

Pool

Delete Head: Link (2 of 3)
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A

CB D

Head Tail

Pool

Delete Head: Clear Value (3 of 3)
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CB D

Head Tail

Pool
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Add Head: Remove from Pool (1 of 3)
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B DC E

Head Tail

Pool

Add Head: Link (2 of 3)
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B DC E

Head Tail

Pool

Add Head: Set Value (3 of 3)
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B DC E

Head Tail

A

Pool

Recursion

The best way to learn recursion…

is to, first, learn recursion!

 Recursion occurs when a 

function directly or indirectly 

calls itself

 This results in a loop

 However, it doesn't use 

iterative structures such as 

For or While loops 

Recursion
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 This can greatly simply 
programming tasks

 Commonly used to traverse a 
graph, tree, or run complex 
calculations

 While powerful, it is costly on 
computer resources

 …and can also create pitfalls

Recursion
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 Sorting

 Searching

 Shortest paths in a graph

 Minimum spanning tree

 Primality testing

Some Well-known Problems
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 Traveling salesman problem

 Knapsack problem

 Chess

 Towers of Hanoi

 Program termination

Some Well-known Problems
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 Recursion allows a problem to be broken down into 

smaller instances of themselves

 Each call will represent a smaller, simpler, version 
of the same problem

 Eventually, it will reach a "base case" which will not

require any more recursive calls

Breaking a Problem Down
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 When the program can be broken into smaller 
pieces, recursion is a great solution 

 Examples:

• graph traversal – searching, etc….

• state machines

• sorting

• many math problems 

Where Recursion Shines
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 If you break down a task into 
smaller parts… at some point, 
it should become a single 
value

 If not, the function will never 
end and will recurse forever –
at least until the computer 
runs out of resources

Danger: Never Ending
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 Accidental recursion is a 
common mistake by beginner 
programmers

 Recursion can be done 
directly or indirectly

• for example: A calls B, B calls 
C, C calls A

• organize your code carefully!

Danger: Accidental Recursion
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 Runaway recursion

• function will recurse forever

• eventually all memory is 

exhausted

 You will see either…

• "stack overflow" error 

• "heap exhaustion" error

Results of These Dangers…
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void toInfinity()

{

System.out.println("To infinity!");

toInfinity();

System.out.println("and beyond!");

}

To infinity… but not beyond

We never get here!
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 Does the problem lend itself to recursion?

• can the problem be broken down into smaller instances 

of itself?

• is there a iterative version that is better

 Is there a base case?

• is there a case where recursion will stop?

• remember: ALWAYS have a stopping point!

Designing a Recursive Function
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Examples of 

Recursion

Examples defined as examples defined as 

examples…

Example 1: Quagmire
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 Glen Quagmire is a character 
on the show Family Guy

 Besides his (almost illegal) 
antics, he is known for his 
catch phrase "Giggity goo!"

 The number of times he says 
"giggity" varies depending on 
the situation

61 62

63 64
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Example 1: Quagmire
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 We can solve this recursively

 If we look at "giggity giggity
goo!", we can observe that it 
is "giggity" + "giggity goo!"

 We can print his catch phrase 

using recursion.

public void quagmire(int count)

{ 

if (count == 0)

{

System.out.print("goo!");

}  

else

{ 

System.out.print("giggity ");

quagmire(count – 1);

}

}

Example 1: Quagmire method
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Base case

Recursive case

public String quagmire(int count)

{ 

if (count == 0)

{

return "goo!";

}  

else

{ 

return "giggity " + quagmire(count - 1);

}

}

Example 1: Quagmire – return a String
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Base case

Recursive case

public static void main(String[] args)

{

System.out.println(quagmire(1));

System.out.println(quagmire(2));

System.out.println(quagmire(5));  

}

Example 1: Quagmire

Spring 2024 Sacramento State - Cook - CSc 130 70

giggity goo!

giggity giggity goo!

giggity giggity giggity giggity giggity goo!

Example 1: Output
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Example 2: Factorials
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 Factorials are classic 
mathematical problem that 
lends itself easily to recursion

 If you don't remember, a 
factorial of n is defined as the 
value of n multiplied by all 
lesser integers ≥ 1

 Eg:  5!  5×4×3×2×1  120

67 68

69 70

71 72
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 It should be easy to observe that n! can be defined 

as n × (n – 1)!

 So, n! can be computed by multiplying n by the 

factorial of one less than it

 4!  4 × 3!  4 × 3 × 2!  4 × 3 × 2 × 1 

Example 2: Factorials
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int factorial(int n) 

{

if (n == 1) 

{

return 1;

} 

else

{

return n * factorial(n – 1);

}

}

Example 2: Factorials
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Base case

Recursive case

Example 2: Factorial
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4 * factorial(3)

factorial(4)

1

3 * factorial(2)

factorial(3)

2 * factorial(1)

factorial(2)

1

factorial(1)

Base case

2

6

24

public static void main(String[] args)

{

System.out.println(factorial(4));

System.out.println(factorial(7));

System.out.println(factorial(12));  

}

Example 2: Factorials
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24

5040

479001600

Example 4: Output
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Yes, it grows 

quickly!

 Euclid created an ingenious 

algorithm for finding the 

greatest common divisor

 This is known example of 
recursion – first solved using 
geometry using the metaphor 

of a tile floor

Example 3: Greatest Common Divisor
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 A common problem in 

computer science is finding 

the greatest common divisor 
or two integers

 For example:
the GCD of 64 and 40 is 8

Example 3: Greatest Common Divisor
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gcd(n, m)  gcd(m, n mod m)

Example 3: Euclid’s Algorithm
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 Euclid's algorithm is recursive

 You reapply the expression below until the second 
value of gcd(n, m) is zero. 

 In this case, n will be the GCD

 60 and 24

• gcd(60, 24)  gcd(24,12)  gcd(12, 0)

• the result is 12

 84 and 20

• gcd(84, 20)  gcd(20, 4)  gcd(4, 0)

• result is 4

 These might seem trivial, but it can find HUGE 
numbers quite easily

Example 3: Greatest Common Divisor
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int gcd(int n, int m) 

{

if (m == 0) 

{

return n;

} 

else

{

return gcd(m, n % m);

}

}
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public static void main(String[] args)

{

System.out.println(gcd(10, 95));

System.out.println(gcd(187, 51));

System.out.println(gcd(240, 36));

}

Example 3: Greatest Common Divisor
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5

17

12

Example 3: Output
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Example 4: Fibonacci Numbers
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 Rabbits tend to reproduce 

like… well… rabbits

 Mathematician Fibonacci

analyzed this situation and 
created a mathematical 
system to predict this 

phenomena

Example 4: Fibonacci Numbers
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 It is used today in finance, 

simulation, and several 

computer science algorithms

 As you get see with the 

picture, it seems to be built 
into nature itself

 The problem:

• start with a pair of rabbits

• at month #2, the rabbits begin to reproduce

• the female gives birth to a new pair of rabbits: one male and 
one female

• babies mature at the same rate and will have more babies

 Fibonacci number sequences predict the total pairs 
after n months

Example 4: Fibonacci Numbers
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 The problem:

• start with a pair of rabbits

• at month #2, the rabbits begin to reproduce

• the female gives birth to a new pair of rabbits: one male and 
one female

• babies mature at the same rate and will have more babies

 Fibonacci number sequences predict the total pairs 
after n months

Example 4: Fibonacci Numbers
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if n == 1 then Fib(n) = 1

if n == 2 then Fib(n) = 1

if n > 2  then Fib(n) = Fib(n-2) + Fib(n-1) 

Example 4: Fibonacci Numbers

 After two months, the female gives birth creating a new pair…. 
then they get pregnant again!

 This continues forever…..

 Sequence: 1,  1,  2,  3,  5,  8,  13,  21,  34, ...
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f(3) = f(2) + f(1) = 1 + 1 = 2

f(4) = f(3) + f(2) = 2 + 1 = 3

f(5) = f(4) + f(3) = 3 + 2 = 5

f(6) = f(5) + f(4) = 5 + 3 = 8

Example 4: Fibonacci Numbers
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85 86

87 88

89 90
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int fibonacci(int n)

{

if (n <= 2)

{

return 1;

} 

else 

{

return fibonacci(n - 2) + fibonacci(n - 1);

}

}

Example 4: Fibonacci Numbers
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Recursion: 

2 different paths!

public static void main(String[] args)

{

System.out.println(fibonacci(1));

System.out.println(fibonacci(8));

System.out.println(fibonacci(12));  

}

Example 4: Fibonacci Numbers
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1

13

89

Example 4: Output
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 Linked Lists can also be 

recursively defined

 Every list can be seen as 
collection of smaller lists

 So, recursion (while not 

recommended) is possible

Example: Linked Lists
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Recursive Sum
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42

Head Tail

13 47 95 11 53

Smaller Sublist

Recursion Example: Sum

Spring 2024 Sacramento State - Cook - CSc 130 96

 Recursion usually happens in 

the recursively defined 

structure itself

 In other words, for linked lists, 

the recursion will happen in 
the node
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Recursive Sum
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42

Head Tail

13 47 95 11 53

42 Sum of this sub-list+

Recursive Sum
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42

Head Tail

13 47 95 11 53

42 Sum of this sub-list+ 13 +

double sum()

{

if (this.next == null)

{

return this.value;

}

else

{

return this.value + this.next.sum();

}

}

Sum Example (in the node class)

Base case (end of the list)
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Recursion on 
smaller list

97 98

99


