Binary Search &

Sorting
AN

Binary Search

Part 5

Cutting the problem in half... many times

Binary Searching

= A binary searchis a fast and
efficient way to search an
array

= Algorithm works like the
classic "secret number game"

= Requires that the array is
sorted before the search

Sprng 2024 Sacramano St ook - 052 120

How it Works

Starts knowing the max & min values
 in the case of arrays, this is the min and max index
* in the number game, it is the min and max value
Algorithm continues
« it looks at the midpoint between the first and last
« if the value > target, the max is set to the midpoint
« if the value < target, the min is set to the midpoint
« this eliminates half of the numbers each iteration

S - ook - G5 120

Binary Example: Find 30

Min

l

l

Max

l

(i) e] =) ol e [e o el o il

0

1 2 3 4 5 6 7 8 9 10 M

12

Binary Example: Find 30

00000000000R0
0

1 2 3 4 5 6 7 8 9 10 11 12

Binary Example: Find 30

Binary Example: Find 30

Min Max
00DD0DOnO00n0
0 3

1 2

4 5 6 7 8 9 10 11 12

Min Max
000000000060
0o 1 9 10 1 12

2 3 4 5 6 7 8

Binary Example: Find 30

Binary Example: Find 30

Min Max
0000000000060
0

1 2 3 4 5 6 7 8 9 10 1 12

Min Max
0000000000000
0

1 2 3 4 5 6 7 8 9 10 11 12

Sorg 2024 Sacrament St - ook - G5 120 o

Benefits

10

Maximum # of Searches

= The binary search is incredibly efficient and
absolutely necessary for large arrays

= Any item can be found only log,(n) searches! It is
O(log n)

= However, since array must be sorted, sorting
algorithms are equally vital

Array Size Sequential Binary
10 10 4
100 100 7
1,000 1,000 10
10,000 10,000 14
100, 000 100, 000 17
1,000,000 1,000,000 20
10,000,000 10,000,000 24
100,000, 000 100, 000, 000 27
1,000, 000,000 1,000,000,000 30

Sy 2024 Socranens S - Gon - G 1)

11

12

Bringing Order of "Chaos"

Sorting

= |tis useful (and efficient) to
sort a list of data —to put it in
specific order

= There are multiple sorting
algorithms which get complex
as they become more
efficient

[]
[]
[]
]

13 14
Sorting Sorting Algorithm Attributes
1. Tim mplexi
= Examples: . e Complexity
 Big-O classificati
« sorting scores by highest to 'g-O classification
lowest |:| naturally, the smallest classification is better
+ sorting filenames in - 2. Auxiliary space
alphabetical order » how extra much memory is needed to run the algorithm
+ sorting students by their .)
: » some algorithms require extra memory — perhaps as
student-id ;
large as the array itself
15 16

Sorting Algorithm Attributes

3. Stable

+ what happens when two array elements, a and b, have the
same sort value?

« if ais initially stored before b, a "stable" sort will not change
their relative positions

4. Online

+ elements can be added at the same time that the data is
being sorted

+ data can be streamed into the array at runtime

Sorg 2028 Sacramano St ook - 052 120

-a Bubble Sort

Carbonated Sorting

17

18

Bubble Sort How It Works

= Consists of two For Loops
= Quter loop runs from the first to the last

= Inner loop ...

= The bubble sortis one of the .
* Basic approach runs from the bottom of the array up to the top (well, the
position of the first loop)

least efficient algorithms
...but it is easy to understand
* "lighter" elements “bubble up” IE
to the top of the array « it checks every two neighbor elements, if the they are out of
* "heavier" items sink to the _ order, it swaps them
so, the smallest element moves up the array

bottom

19 20

Bubble Sort Example

The Bubble Sort (Java-ish)

for(i = 0; i < count-1; i++) . Outer Loop

{
for(j = count-1; j > i; j—-) . Inner Loop

{
if (array[j-1] < arrayl[]jl)

{
//swap array[j-1] and arrayl[j]

Sacramano St ook - 052 120

21 22

Bubble Sort Example Bubble Sort Example

. Outer Loop

. Outer Loop
. Inner Loop

. Inner Loop

23 24

Bubble Sort Example Bubble Sort Example

. Outer Loop
. Inner Loop

array

. Outer Loop
. Inner Loop

25

Bubble Sort Example Bubble Sort Example

. Outer Loop
. Inner Loop

26

. Outer Loop
. Inner Loop

Sormg 2024

27

Bubble Sort Example Bubble Sort Example

. Outer Loop
. Inner Loop

. Outer Loop
. Inner Loop

Sorm 2024

29

Bubble Sort Example

. Outer Loop

Bubble Sort Example

31

Efficiency of the Bubble Sort

= The Bubble Sort is extremely inefficient and only
good for tiny arrays
= Since Bubble Sort uses two embedded loops
« the outer loop looks at all nitems
« the inner loop looks at basically nitems

« the resulting algorithm gets exponentially less efficient
as nincreases

32

Efficiency of the Bubble Sort

The Bubble Sort O(n?)

... two embedded loops that
are based on n

... and all that swapping
doesn't help either!

33

Bubble Sort Summary

Bubble Sort

Time Average O(n?)

Time Best O(n?)

Time Worst o(n?)

Auxiliary space O(1)

Stable Yes — Equal element order preserved
Online? No — Entire array in use

34

— Selection Sort
—

The Human Way

35

36

Selection Sort Selection Sort

= The Selection Sortis a similar = Like the Bubble Sort, it consists of two For Loops —
to the Bubble Sort one outer and one inner
= However...

« rather than "bubble up" smaller
items, it scans the entire array

« it finds the smallest element

= Quter loop runs from the first to the last

: = Inner loop ...
- starts at the position of the outer loop
. « scans down and finds the smallest value
+ only then does it swap the

values = Then, after the scan, do a single swap

ping 224 Socranant e -Cook - 052 130 E Spug 220 Secramenss Suie -Gk -CSe 130 =

37 38

The Selection Sort

Selection Sort Example

for(i = 0; i < count-1; i++) il . Outer Loop

{
best = i; . Inner Loo #
for(j = i; j < count; j++) P

{
if (array[j] < arrayl[best])
{
best = j;
}
}

//swap array[i] and array[best]

Sorg 2028 Sacramano St ook - 052 120 @ Sorg 2024 Sacrament St - ook - G5 120 “

39 40

Selection Sort Example: New Best Selection Sort Example

. Outer Loop
. Inner Loop #

. Outer Loop
. Inner Loop

41 42

Selection Sort Example: New Best

Selection Sort Example

Selection Sort Example

. Outer Loop
. Inner Loop

Selection Sort Example: New Best

. Outer Loop
. Inner Loop #

45

Selection Sort Example: Swapped

. Outer Loop

sprng 2024 Sacramano St ook - 052 120

46

Selection Sort Example: Search Again

. Outer Loop
. Inner Loop

47

48

Selection Sort Example: New Best Selection Sort Example

Selection Sort Example Selection Sort Example: Swapped

. Outer Loop
. Inner Loop

. Outer Loop
. Inner Loop

51 52

Selection Sort Example: Search Again Selection Sort Example

. Outer Loop
. Inner Loop

. Outer Loop
. Inner Loop

53 54

Selection Sort Example: No Swap Selection Sort Example: Search Again

Selection Sort Example: No Swap Selection Sort Example: Done

. Outer Loop
. Inner Loop

. Outer Loop
. Inner Loop

57 58

Selection Sort Summary

Time Average O(n?)
Tme Eest o Insertion Sort
Time Worst o(n?)
Auxiliary space o(1)
Stable Yes — Equal element order preserved
Online? No - Entira aray in use Building a sorted array... bit by bit
(er... byte by byte?)
59 60

10

Insertion Sort

= The Insertion Sortis a O(n?)
sorting algorithm with several
advantages over bubble-sort
and selection-sort

= While it is still O(n?) is far
more efficient than the other
two

]
—
L]

=]

Deck of Cards

= Often, it is compared to sorting a

deck of cards

= This is how you would manually sort

a row of cards

« if you start sorting on the left side, you
will find a card, move it, and shift the
rest of the cards right

+ you build a sorted list a bit at a time —
on the left side of your row

®

61

How it Works

= The algorithm consists of two
loops — one embedded within
the other

= The outer loop starts and the
top of the array and moves
down

= The algorithm builds a sorted
array above the outer loop.

Sorg 2028 Sacramano St ook - 052 120

How it Works

= Current array value is saved
into a temporary variable

= Inner loop then searches all
the values that come before it
in the array

= |f the value, being looked at,
is larger than the saved
value, it's moved down

2

63

The Insertion Sort

for (i = 1; i < count; i++)
{

value = arrayl[i];

j=1i-1;
while (7 >= 0 && array[j] > value)
{
array[j + 1] = arrayl[ijl;
==
}
array[j + 1] = value;

}

Sorg 2028 Sacramano St ook - 052 120

Insertion Sort Example

. Outer Loop

. Inner Loop

65

66

11

Insertion Sort Example Insertion Sort Example

. Outer Loop

. Inner Loop

value

67

Insertion Sort Example: Return "Card"

. Outer Loop
. Inner Loop

68

Insertion Sort Example: Next Pass

. Outer Loop
. Inner Loop

Sormg 2024

69

Insertion Sort Example Insertion Sort Example

. Outer Loop
. Inner Loop

value

. Outer Loop
. Inner Loop

Sorm 2024

71

12

Insertion Sort Example

. Outer Loop
. Inner Loop

Insertion Sort Example: Return "Card"

73

Insertion Sort Example: Next Pass

. Outer Loop
. Inner Loop

74

Insertion Sort Example: Next Pass

. Outer Loop
. Inner Loop

Sormg 2024

75

Insertion Sort Example

. Outer Loop
. Inner Loop

Insertion Sort Example

. Outer Loop
. Inner Loop

Sorm 2024

77

13

Insertion Sort Example Insertion Sort Example

. Outer Loop . Outer Loop
. Inner Loop . Inner Loop

Inner loop

stops here!

pa

79 80

Insertion Sort Example: Return "card" Insertion Sort Example: Next Pass

. Outer Loop . Outer Loop
. Inner Loop . Inner Loop

81 82

Insertion Sort Example Insertion Sort Example

. Outer Loop . Outer Loop
. Inner Loop . Inner Loop

= R

83 84

14

Insertion Sort Example

Insertion Sort Example

Insertion Sort Example

Insertion Sort Example: Return "Card"

. Outer Loop
. Inner Loop

Insertion Sort Example: Done

. Outer Loop
. Inner Loop

Advantages

= Because Insertion Sort creates a sorted array
above the outer loop

« inner loop, on average, only needs to move 1/2
positions up — far faster!

» data can be sent during the sorting process

« this means the algorithm is considered "online" —i.e. it
can sort streaming data

Sorg 2024 Sacraments St - ook - G5 120 B

89

90

15

Advantages

= |nsertion sort does not "swap" values

« most of the overhead of bubble and selection-sort is
swapping

« insertion sort moves data as it sorts, so, there is little
unnecessary overhead

= Little to no auxiliary storage overhead

« like Bubble-Sort and Selection-Sort, Insertion-Sort requires
little storage overhead

+ S0, in regards to n, storage complexity is O(1)

Advantages

= |nsertion sort is O(n) on sorted lists

« inner loop stops when the current array value cannot be
moved up

» the more sorted the list, the more the inner loop
approaches O(1)

91

Insertion Sort Summary

Insertion Sort

Time Average 0O(n?)

Time Best O(n)

Time Worst o(n?)

Auxiliary space o(1)

Stable Yes — Equal element order preserved
Online? Yes — Can sort streamed data

92

Insertion Sort with an identity crisis

93

Shell Sort

= Shell-Sort is a version of the
Insertion-Sort created by
Donald Shell in 1959 (5 BBW)

= Yes, it is named after the guy,

not a shell metaphor _
= But, ironically, that metaphor |:|

works

94

Shell Sort

= |t was the first algorithm to
break the O(n2) barrier

= For afew years, this was the
fastest sort algorithm
available — until O(n log n)
was invented

s St - ook - G 120

95

96

16

What is Going On?

What's Going On?

= With insertion sort, each time we insert an element,
the rest are moved one step closer to where they

belong
= Can we move elements a larger distance than just
one?

= Yes... Shell Sort works like Insertion Sort, but
works on elements at large distances

= This distance is called the gap

= Gap changes with each outer loop iteration

« the distance between comparisons decreases as the
sorting algorithm runs

in the last iteration, the gap is 1

* so0, at that point, adjacent elements are compared — so it
is a regular Insertion Sort

= Shell Sort is also known as a "diminishing
increment sort"

97

Sorting "Shells"

98

Sorting "Shells"

= Shell Sort orders elements that are spaced a relative
distance from each other

= So, the red cells above are sorted relative to each
other, as are the yellow, green, and blue elements

= The decreasing gaps are a sequence

= The notation h;, h,, hs,. . ., h,represents a sequence of
increasing integer values which will be used (from right to left)

= Any sequence works if ith, > h,yand h; =1

46.92 83 11.47 76 53.22 3

99

Each Shell is Sorted

= h,-sorted array - all elements with gap h, are sorted
relative to each other

= For eachi, we have array[i] < array[i+ h,]
= All elements spaced hy apart will be sorted

46.92 83 11.47 76 53.22 3

100

Each Shell is Sorted

= Shell-Sort only works because an array that is h,-
sorted...

= ...remains h,-sorted when h,_;-sorted.

11.22 3 46.47 76 53.92 83

101

102

17

So, What are Gap Values?

= For hy, hy, hs,. .., hywe need to determine what
the actual values will be

= Some sequences as better than others

= Shell's original design...
« starts at N/ 2 (where N is the size of the array)
« cuts the gap in half for each iteration

= There are several competing sequences

So, What are the Gap Values

= The algorithm is most efficient when...

« the gap sequence are relatively prime

« i.e. the sequence does not share any divisors
= However...

+ using a prime sequence is often not practical in a program —
too much to store!

« so, real, practical solutions attempt to approximate a
relatively prime sequence

103

So, What are Gap Values?

Creator Sequence

Shell 1,..,(n/8),(n/4),(n/2)

Hibbard 1,8,7,15,31, ..., 21

Knuth 1,4,13, 40,121, ..., (3<-1)/2
Sedgewick | 1,5, 19, 41,109, ..., (4%~ 3 * 24+ 1)

104

The Shell Sort: Original

for (gap = count / 2; gap > 0; gap /= 2)
{
for(i = gap; i < count; it++)
{
value = arraylil;
J=4;
while (j >= gap && arraylj - gap] > value)
array[j] = array[j - gapl;
j -= gap;
}

ali] = value;

105

Gap = 4, First Outer Loop Pass

Gap = 4, So, 4 overlapped arrays

. Outer Loop

. Inner Loop

gap

value

Sorg 2028 Sacramano St ook - 052 120 o

<
w

-
[

N
[

[
H
b
< <

0
1
2
3
4
=
6
7

. Outer Loop
. Inner Loop

[
i
5
SHEH <

N

N o U A W N KH O
o
®

value

107

108

18

Gap = 4, Outer Loop starts at 4 (the gap)

. Outer Loop

. Inner Loop

sl
O w

N
iy

[}
H
B
< <

4 o U A W N H O

gap

Inner Loop starts at "gap" indexes up

. Outer Loop

. Inner Loop

I
]
5
SHEH <

N

N4 o U A W N H O

gap

109

QOuter Loop (Index 4): Remove 5

. Outer Loop

. Inner Loop

N o U A W N K O

Sprng 2024 Sacramano St ook - 052 120

110

Move value down (Insertion Sort-like)

. Outer Loop

. Inner Loop

N o U A W N KH O

Inner Loop Done — Return Value

. Outer Loop

. Inner Loop

"
[

N
i

[
H
5
~ a 3

0
1
2
3
4 73
=
6
7

gap

sprng 2024 Sacramano St ook - 052 120

Outer Loop (Index 5): remove 21

. Outer Loop

. Inner Loop

I
N

"
[

73

N
_

N o U s W N R O
o

i

5

< 9 <

gap

113

114

19

Move 42 Down (its greater than 21)

. Outer Loop

. Inner Loop o
1
2
3
4
5
value
6
7

Inner Loop Complete. Return 21

. Outer Loop

. Inner Loop

N4 o U A W N H O

QOuter Loop (Index 6): Remove 7

. Outer Loop

Move 11 Down (its greater than 7)

. Outer Loop

array

. Inner Loop o HEEEN . Inner Loop o
. 1
2 2

gap gap
[4] 2] 3
a s
| s

value value
s s
7 I 7

—_— [—— s

Inner Loop Complete: Return 7

. Outer Loop

. Inner Loop 0
1
2
3
4
5
value
6
7

sprng 2024 Sacramano St ook - 052 120

Outer Loop (Index 7): Remove 90

. Outer Loop

. Inner Loop

N
_

N o U s W N R O
o

i

5

afl = <

73

I
N

"
[

gap

120

20

Don't Move 58 Down. lt's less than 90.

Inner Loop Complete: Return 90

. Outer Loop

. Inner Loop

4 o U A W N H O

. Outer Loop

. Inner Loop

gap

N4 o U A W N H O

Gap of 4 is Compete

Gap = 2. So now, 2 overlapped arrays

. Outer Loop

. Inner Loop

p
H
3
all <& <

N o U A W N K O
= <
= w

gap

Sprng 2024 Sacramano St ook - 052 120

. Outer Loop

. Inner Loop

Note that each

overlapped
array is sorted

N o U A W N KH O
<
w

[
B
]
]
~ <

gap

2 Sorg 2024 Sacrament St - ook - G5 120 e

123

Gap = 2, Outer Loop #1: Remove 7

124

Don't Move 5 Down (smaller than 7)

. Outer Loop

. Inner Loop

N
B

1)
H
5
all <

"
[

0
1
2
3
4 73
=
6
7

gap

sprng 2024 Sacramano St ook - 052 120

. Outer Loop

. Inner Loop

0
al
2
5
4
5
6
7

Sorg 2024 Sacraments St - ook - G5 120 s

125

21

Inner Loop Complete: Return 7

Inner Loop Complete: Return 7.

. Outer Loop

. Inner Loop o
1
2
3
4
5
value
6
7

. Outer Loop

. Inner Loop

gap

N
=

N o U A W N KB O
w
L]
3

asfl <l o
N e <

QOuter Loop (Index 3): Remove 58

Don't move 21 down (smaller than 58)

. Outer Loop

. Inner Loop

p
H
3
all < <

N o U A W N K O
= <
= w

gap

Sprng 2024 Sacramano St ook - 052 120

. Outer Loop

. Inner Loop

N o U A W N KH O

Sorg 2024 Sacrament St - ook - G5 120)

129

Outer Loop (Index 4): Remove 73

Don't move 7 down. Inner Loop Stops.

. Outer Loop

. Inner Loop

N
B

1)
H
5
all <

"
[

0
1
2
3
4 73
=
6
7

gap

sprng 2024 Sacramano St ook - 052 120

. Outer Loop

. Inner Loop

Inner loop
stops here!

N o U A W N KH O

Sorg 2024 Sacraments St - ook - G5 120 2

131

22

Inner Loop Complete: Return 7.

Outer Loop (Index 5): Remove 42

. Outer Loop

. Inner Loop o
1
2
3
4
5
value
6
7

. Outer Loop

. Inner Loop

N
=

N o U s w N KR O
o

]

5

all < <

N B
o w

gap
Illiiiiiiilll

Move 58 down (it's greater than 42)

134

Inner Loop Complete. Return 42

. Outer Loop . Outer Loop
. Inner Loop 0 . Inner Loop o
1 1
2 2

gap gap

[| - [z | -
4 4
5 5

value value
6 6
7 7

—_— e — s =
135 136

.. and so on....

Gap of 2 is Compete

= The example continues to sort for each h,
= The outer loop continues to the bottom of the array

= Finally, gap will go to one and the sort acts just like
an Insertion-Sort

sprng 2024 Sacramano St ook - 052 120

. Outer Loop
Note that each
. Inner Loop overlapped

array is sorted

N
=

58

array
o I
: I
2
3
<« I
s HEE
¢ I
7 I

73

gap

137

138

23

Time Complexity

Time Complexity

= Time complexity of Shell Sort is up for debate

= Although the algorithm is fairly simple, proving its
time complexity is not
= Whatis known...
« it is approximately O(n") where 1 <r <2

« this is ultimately faster than O(n?) but worse than O(n
log n)

= Empirical analysis of the algorithm has given some
widely accepted values for average, best, and
worst times

= Worst case performance (using Hibbard's
sequence) is O(n%2)

= Average performance is thought to be about
O(n%4)

139

Shell Sort Summary

Time Average = O(n%4)
Time Best = O(n log n) — For a near sorted list
Time Worst = QO(n3?)
Auxiliary space O(1)
Stable No — Equal element order not preserved
Online? No — Entire array in use

141

140

24

