Binary Search &

Sorting
AN

Binary Search

Part 5

Cutting the problem in half... many times

Binary Searching

= A binary searchis a fast and
efficient way to search an
array

= Algorithm works like the
classic "secret number game"

= Requires that the array is
sorted before the search
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How it Works

Starts knowing the max & min values
 in the case of arrays, this is the min and max index
* in the number game, it is the min and max value
Algorithm continues
« it looks at the midpoint between the first and last
« if the value > target, the max is set to the midpoint
« if the value < target, the min is set to the midpoint
« this eliminates half of the numbers each iteration
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Binary Example: Find 30
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Binary Example: Find 30

Binary Example: Find 30

Min Max
00DD0DOnO00n0
0 3

1 2

4 5 6 7 8 9 10 11 12

Min Max
000000000060
0o 1 9 10 1 12

2 3 4 5 6 7 8

Binary Example: Find 30

Binary Example: Find 30
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Benefits

10

Maximum # of Searches

= The binary search is incredibly efficient and
absolutely necessary for large arrays

= Any item can be found only log,(n) searches! It is
O(log n)

= However, since array must be sorted, sorting
algorithms are equally vital

Array Size Sequential Binary
10 10 4
100 100 7
1,000 1,000 10
10,000 10,000 14
100, 000 100, 000 17
1,000,000 1,000,000 20
10,000,000 10,000,000 24
100,000, 000 100, 000, 000 27
1,000, 000,000 1,000,000,000 30
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Bringing Order of "Chaos"

Sorting

= |tis useful (and efficient) to
sort a list of data —to put it in
specific order

= There are multiple sorting
algorithms which get complex
as they become more
efficient

[]
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]
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Sorting Sorting Algorithm Attributes
1. Tim mplexi
= Examples: . e Complexity
 Big-O classificati
« sorting scores by highest to 'g-O classification
lowest |:|  naturally, the smallest classification is better
+ sorting filenames in - 2. Auxiliary space
alphabetical order » how extra much memory is needed to run the algorithm
+ sorting students by their . )
: » some algorithms require extra memory — perhaps as
student-id ;
large as the array itself
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Sorting Algorithm Attributes

3. Stable

+ what happens when two array elements, a and b, have the
same sort value?

« if ais initially stored before b, a "stable" sort will not change
their relative positions

4. Online

+ elements can be added at the same time that the data is
being sorted

+ data can be streamed into the array at runtime
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-a Bubble Sort

Carbonated Sorting
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Bubble Sort How It Works

= Consists of two For Loops
= Quter loop runs from the first to the last

= Inner loop ...

= The bubble sortis one of the .
* Basic approach  runs from the bottom of the array up to the top (well, the
position of the first loop)

least efficient algorithms
...but it is easy to understand
* "lighter" elements “bubble up” IE
to the top of the array « it checks every two neighbor elements, if the they are out of
* "heavier" items sink to the _ order, it swaps them
so, the smallest element moves up the array

bottom

19 20

Bubble Sort Example

The Bubble Sort (Java-ish)

for(i = 0; i < count-1; i++) . Outer Loop

{
for(j = count-1; j > i; j—-) . Inner Loop

{
if (array[j-1] < arrayl[]jl)

{
//swap array[j-1] and arrayl[j]
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Bubble Sort Example Bubble Sort Example

. Outer Loop

. Outer Loop
. Inner Loop

. Inner Loop
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Bubble Sort Example Bubble Sort Example

. Outer Loop
. Inner Loop

array

. Outer Loop
. Inner Loop
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Bubble Sort Example Bubble Sort Example

. Outer Loop
. Inner Loop
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. Outer Loop
. Inner Loop

Sormg 2024
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Bubble Sort Example Bubble Sort Example

. Outer Loop
. Inner Loop

. Outer Loop
. Inner Loop
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Bubble Sort Example

. Outer Loop

Bubble Sort Example
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Efficiency of the Bubble Sort

= The Bubble Sort is extremely inefficient and only
good for tiny arrays
= Since Bubble Sort uses two embedded loops
« the outer loop looks at all nitems
« the inner loop looks at basically nitems

« the resulting algorithm gets exponentially less efficient
as nincreases
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Efficiency of the Bubble Sort

The Bubble Sort O(n?)

... two embedded loops that
are based on n

... and all that swapping
doesn't help either!
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Bubble Sort Summary

Bubble Sort

Time Average O(n?)

Time Best O(n?)

Time Worst o(n?)

Auxiliary space O(1)

Stable Yes — Equal element order preserved
Online? No — Entire array in use
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— Selection Sort
—

The Human Way
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Selection Sort Selection Sort

= The Selection Sortis a similar = Like the Bubble Sort, it consists of two For Loops —
to the Bubble Sort one outer and one inner
= However...

« rather than "bubble up" smaller
items, it scans the entire array

« it finds the smallest element

= Quter loop runs from the first to the last

: = Inner loop ...
- starts at the position of the outer loop
. « scans down and finds the smallest value
+ only then does it swap the

values = Then, after the scan, do a single swap
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The Selection Sort

Selection Sort Example

for(i = 0; i < count-1; i++) il . Outer Loop

{
best = i; . Inner Loo #
for(j = i; j < count; j++) P

{
if (array[j] < arrayl[best])
{
best = j;
}
}

//swap array[i] and array[best]
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Selection Sort Example: New Best Selection Sort Example

. Outer Loop
. Inner Loop #

. Outer Loop
. Inner Loop
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Selection Sort Example: New Best

Selection Sort Example

Selection Sort Example

. Outer Loop
. Inner Loop

Selection Sort Example: New Best

. Outer Loop
. Inner Loop #
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Selection Sort Example: Swapped

. Outer Loop
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Selection Sort Example: Search Again

. Outer Loop
. Inner Loop
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Selection Sort Example: New Best Selection Sort Example

Selection Sort Example Selection Sort Example: Swapped

. Outer Loop
. Inner Loop

. Outer Loop
. Inner Loop
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Selection Sort Example: Search Again Selection Sort Example

. Outer Loop
. Inner Loop

. Outer Loop
. Inner Loop
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Selection Sort Example: No Swap Selection Sort Example: Search Again

Selection Sort Example: No Swap Selection Sort Example: Done

. Outer Loop
. Inner Loop

. Outer Loop
. Inner Loop
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Selection Sort Summary

Time Average O(n?)
Tme Eest o Insertion Sort
Time Worst o(n?)
Auxiliary space o(1)
Stable Yes — Equal element order preserved
Online? No - Entira aray in use Building a sorted array... bit by bit
(er... byte by byte?)
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Insertion Sort

= The Insertion Sortis a O(n?)
sorting algorithm with several
advantages over bubble-sort
and selection-sort

= While it is still O(n?) is far
more efficient than the other
two

]
—
L]

=]

Deck of Cards

= Often, it is compared to sorting a

deck of cards

= This is how you would manually sort

a row of cards

« if you start sorting on the left side, you
will find a card, move it, and shift the
rest of the cards right

+ you build a sorted list a bit at a time —
on the left side of your row

®
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How it Works

= The algorithm consists of two
loops — one embedded within
the other

= The outer loop starts and the
top of the array and moves
down

= The algorithm builds a sorted
array above the outer loop.
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How it Works

= Current array value is saved
into a temporary variable

= Inner loop then searches all
the values that come before it
in the array

= |f the value, being looked at,
is larger than the saved
value, it's moved down

2
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The Insertion Sort

for (i = 1; i < count; i++)
{

value = arrayl[i];

j=1i-1;
while (7 >= 0 && array[j] > value)
{
array[j + 1] = arrayl[ijl;
==
}
array[j + 1] = value;

}
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Insertion Sort Example

. Outer Loop

. Inner Loop
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Insertion Sort Example Insertion Sort Example

. Outer Loop

. Inner Loop

value
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Insertion Sort Example: Return "Card"

. Outer Loop
. Inner Loop
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Insertion Sort Example: Next Pass

. Outer Loop
. Inner Loop

Sormg 2024
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Insertion Sort Example Insertion Sort Example

. Outer Loop
. Inner Loop

value

. Outer Loop
. Inner Loop

Sorm 2024
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Insertion Sort Example

. Outer Loop
. Inner Loop

Insertion Sort Example: Return "Card"
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Insertion Sort Example: Next Pass

. Outer Loop
. Inner Loop
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Insertion Sort Example: Next Pass

. Outer Loop
. Inner Loop

Sormg 2024
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Insertion Sort Example

. Outer Loop
. Inner Loop

Insertion Sort Example

. Outer Loop
. Inner Loop
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Insertion Sort Example Insertion Sort Example

. Outer Loop . Outer Loop
. Inner Loop . Inner Loop

Inner loop

stops here!

pa

79 80

Insertion Sort Example: Return "card" Insertion Sort Example: Next Pass

. Outer Loop . Outer Loop
. Inner Loop . Inner Loop
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Insertion Sort Example Insertion Sort Example

. Outer Loop . Outer Loop
. Inner Loop . Inner Loop

= R
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Insertion Sort Example

Insertion Sort Example

Insertion Sort Example

Insertion Sort Example: Return "Card"

. Outer Loop
. Inner Loop

Insertion Sort Example: Done

. Outer Loop
. Inner Loop

Advantages

= Because Insertion Sort creates a sorted array
above the outer loop

« inner loop, on average, only needs to move 1/2
positions up — far faster!

» data can be sent during the sorting process

« this means the algorithm is considered "online" —i.e. it
can sort streaming data
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Advantages

= |nsertion sort does not "swap" values

« most of the overhead of bubble and selection-sort is
swapping

« insertion sort moves data as it sorts, so, there is little
unnecessary overhead

= Little to no auxiliary storage overhead

« like Bubble-Sort and Selection-Sort, Insertion-Sort requires
little storage overhead

+ S0, in regards to n, storage complexity is O(1)

Advantages

= |nsertion sort is O(n) on sorted lists

« inner loop stops when the current array value cannot be
moved up

» the more sorted the list, the more the inner loop
approaches O(1)
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Insertion Sort Summary

Insertion Sort

Time Average 0O(n?)

Time Best O(n)

Time Worst o(n?)

Auxiliary space o(1)

Stable Yes — Equal element order preserved
Online? Yes — Can sort streamed data
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Insertion Sort with an identity crisis
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Shell Sort

= Shell-Sort is a version of the
Insertion-Sort created by
Donald Shell in 1959 (5 BBW)

= Yes, it is named after the guy,

not a shell metaphor _
= But, ironically, that metaphor |:|

works
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Shell Sort

= |t was the first algorithm to
break the O(n2) barrier

= For afew years, this was the
fastest sort algorithm
available — until O(n log n)
was invented
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What is Going On?

What's Going On?

= With insertion sort, each time we insert an element,
the rest are moved one step closer to where they

belong
= Can we move elements a larger distance than just
one?

= Yes... Shell Sort works like Insertion Sort, but
works on elements at large distances

= This distance is called the gap

= Gap changes with each outer loop iteration

« the distance between comparisons decreases as the
sorting algorithm runs

in the last iteration, the gap is 1

* so0, at that point, adjacent elements are compared — so it
is a regular Insertion Sort

= Shell Sort is also known as a "diminishing
increment sort"
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Sorting "Shells"
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Sorting "Shells"

= Shell Sort orders elements that are spaced a relative
distance from each other

= So, the red cells above are sorted relative to each
other, as are the yellow, green, and blue elements

= The decreasing gaps are a sequence

= The notation h;, h,, hs,. . ., h,represents a sequence of
increasing integer values which will be used (from right to left)

= Any sequence works if ith, > h,yand h; =1

46.92 83 11.47 76 53.22 3
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Each Shell is Sorted

= h,-sorted array - all elements with gap h, are sorted
relative to each other

= For eachi, we have array[i] < array[ i+ h,]
= All elements spaced hy apart will be sorted

46.92 83 11.47 76 53.22 3
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Each Shell is Sorted

= Shell-Sort only works because an array that is h,-
sorted...

= ...remains h,-sorted when h,_;-sorted.

11.22 3 46.47 76 53.92 83
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102

17



So, What are Gap Values?

= For hy, hy, hs,. .., hywe need to determine what
the actual values will be

= Some sequences as better than others

= Shell's original design...
« starts at N/ 2 (where N is the size of the array)
« cuts the gap in half for each iteration

= There are several competing sequences

So, What are the Gap Values

= The algorithm is most efficient when...

« the gap sequence are relatively prime

« i.e. the sequence does not share any divisors
= However...

+ using a prime sequence is often not practical in a program —
too much to store!

« so, real, practical solutions attempt to approximate a
relatively prime sequence
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So, What are Gap Values?

Creator Sequence

Shell 1,..,(n/8),(n/4),(n/2)

Hibbard 1,8,7,15,31, ..., 21

Knuth 1,4,13, 40,121, ..., (3<-1)/2
Sedgewick | 1,5, 19, 41,109, ..., (4%~ 3 * 24+ 1)
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The Shell Sort: Original

for (gap = count / 2; gap > 0; gap /= 2)
{
for(i = gap; i < count; it++)
{
value = arraylil;
J=4;
while (j >= gap && arraylj - gap] > value)
array[j] = array[j - gapl;
j -= gap;
}

ali] = value;
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Gap = 4, First Outer Loop Pass

Gap = 4, So, 4 overlapped arrays

. Outer Loop

. Inner Loop

gap

value
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. Outer Loop
. Inner Loop
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Gap = 4, Outer Loop starts at 4 (the gap)

. Outer Loop

. Inner Loop

sl
O w

N
iy

[}
H
B
< <

4 o U A W N H O

gap

Inner Loop starts at "gap" indexes up

. Outer Loop

. Inner Loop

I
]
5
SHEH <

N

N4 o U A W N H O

gap
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QOuter Loop (Index 4): Remove 5

. Outer Loop

. Inner Loop

N o U A W N K O
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Move value down (Insertion Sort-like)

. Outer Loop

. Inner Loop

N o U A W N KH O

Inner Loop Done — Return Value

. Outer Loop

. Inner Loop
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Outer Loop (Index 5): remove 21

. Outer Loop

. Inner Loop

I
N

"
[
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N
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o
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gap
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Move 42 Down (its greater than 21)

. Outer Loop

. Inner Loop o
1
2
3
4
5
value
6
7

Inner Loop Complete. Return 21

. Outer Loop

. Inner Loop

N4 o U A W N H O

QOuter Loop (Index 6): Remove 7

. Outer Loop

Move 11 Down (its greater than 7)

. Outer Loop

array

. Inner Loop o HEEEN . Inner Loop o
. 1
2 2

gap gap
[ 4] 2 ] 3
a s
| s

value value
s s
7 I 7

—_— [ —— s

Inner Loop Complete: Return 7

. Outer Loop

. Inner Loop 0
1
2
3
4
5
value
6
7
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Outer Loop (Index 7): Remove 90

. Outer Loop

. Inner Loop

N
_

N o U s W N R O
o

i

5

afl = <

73

I
N

"
[

gap
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Don't Move 58 Down. lt's less than 90.

Inner Loop Complete: Return 90

. Outer Loop

. Inner Loop

4 o U A W N H O

. Outer Loop

. Inner Loop

gap

N4 o U A W N H O

Gap of 4 is Compete

Gap = 2. So now, 2 overlapped arrays

. Outer Loop

. Inner Loop

p
H
3
all <& <

N o U A W N K O
= <
= w

gap
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. Outer Loop

. Inner Loop

Note that each

overlapped
array is sorted

N o U A W N KH O
<
w

[
B
]
]
~ <

gap
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Gap = 2, Outer Loop #1: Remove 7
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Don't Move 5 Down (smaller than 7)

. Outer Loop

. Inner Loop

N
B
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H
5
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=
6
7

gap

sprng 2024 Sacramano St ook - 052 120

. Outer Loop

. Inner Loop

0
al
2
5
4
5
6
7
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Inner Loop Complete: Return 7

Inner Loop Complete: Return 7.

. Outer Loop

. Inner Loop o
1
2
3
4
5
value
6
7

. Outer Loop

. Inner Loop

gap

N
=

N o U A W N KB O
w
L]
3

asfl <l o
N e <

QOuter Loop (Index 3): Remove 58

Don't move 21 down (smaller than 58)

. Outer Loop

. Inner Loop

p
H
3
all < <

N o U A W N K O
= <
= w

gap
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. Outer Loop

. Inner Loop

N o U A W N KH O
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Outer Loop (Index 4): Remove 73

Don't move 7 down. Inner Loop Stops.

. Outer Loop

. Inner Loop

N
B

1)
H
5
all <
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0
1
2
3
4 73
=
6
7

gap
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. Outer Loop

. Inner Loop

Inner loop
stops here!

N o U A W N KH O
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Inner Loop Complete: Return 7.

Outer Loop (Index 5): Remove 42

. Outer Loop

. Inner Loop o
1
2
3
4
5
value
6
7

. Outer Loop

. Inner Loop

N
=

N o U s w N KR O
o

]

5

all < <

N B
o w

gap
Illiiiiiiilll

Move 58 down (it's greater than 42)
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Inner Loop Complete. Return 42

. Outer Loop . Outer Loop
. Inner Loop 0 . Inner Loop o
1 1
2 2

gap gap

[ | - [z | -
4 4
5 5

value value
6 6
7 7

—_— e — s =
135 136

.. and so on....

Gap of 2 is Compete

= The example continues to sort for each h,
= The outer loop continues to the bottom of the array

= Finally, gap will go to one and the sort acts just like
an Insertion-Sort
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. Outer Loop
Note that each
. Inner Loop overlapped

array is sorted

N
=

58

array
o I
: I
2
3
<« I
s HEE
¢ I
7 I

73

gap
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Time Complexity

Time Complexity

= Time complexity of Shell Sort is up for debate

= Although the algorithm is fairly simple, proving its
time complexity is not
= Whatis known...
« it is approximately O(n") where 1 <r <2

« this is ultimately faster than O(n?) but worse than O(n
log n)

= Empirical analysis of the algorithm has given some
widely accepted values for average, best, and
worst times

= Worst case performance (using Hibbard's
sequence) is O(n%2)

= Average performance is thought to be about
O(n%4)
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Shell Sort Summary

Time Average = O(n%4)
Time Best = O(n log n) — For a near sorted list
Time Worst = QO(n3?)
Auxiliary space O(1)
Stable No — Equal element order not preserved
Online? No — Entire array in use
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