Recursive

Sorting
AN

]
»

P Merging Arrays

Part 6

»

Quite easy... and quite common

Merging Arrays

= [tis a common task in
Computer Science to
combine two different arrays

into one |:>|:|
= |f both arrays are unsorted...
« the task is fairly simple O(n)

+ just add one onto the end of
the other

Merging Arrays

= However, often two sorted
arrays are combined

= _.and the resulting array must

be sorted - <:|

Merging Arrays

Merge Algorithm

= The algorithm for merging two sorted arrays is very
simple

= The resulting time complexity is O(n)

= However, it requires auxiliary storage of O(n)

= Keep two counters — one for each array
= Loop while both arrays have data
« take the smaller element and put it in the auxiliary array
+ increment the array's counter (which just lost an element)
= After the loop
« one array will still have elements

« append them to the auxiliary array

Sorted Array Merge Example

Sorted Array Merge Example

4 4

0DDDD0 oooona

Array 1 Array 2

Auxiliary Array

L aaaan

Array 1 Array 2

L)

Auxiliary Array

Sorted Array Merge Example

Sorted Array Merge Example

. 4 4

DDoDo0 DOGnO

Array 1 Array 2

8

Aucxiliary Array

D000 | coaao

Array 1 Array 2

-

Auxiliary Array

Sorted Array Merge Example

10

Sorted Array Merge Example

4 4

2000 ooan

Array 1 Array 2

e a

Aucxiliary Array

ooo 0ono

Array 1 Array 2

oaooo

Auxiliary Array

11

12

Sorted Array Merge Example Sorted Array Merge Example

(I EEIE) BE (=)=

Array 1 Array 2 Array 1 Array 2
0000e0 oDooens
Auxiliary Array Auxiliary Array
13 14

Sorted Array Merge Example Sorted Array Merge Example

. 4 4

o Qoo o @0

Array 1 Array 2 Array 1 Array 2
ra a ra 'aa aa
Aucxiliary Array Auxiliary Array
15 16

Dump Rest of the Array Dump Rest of the Array

@0

Array 1 Array 2 Array 1 Array 2
8 a [a) rala a a as
Aucxiliary Array Auxiliary Array
17 18

]
d

. Merge Sort

»

Divide and conquer!

= Merge Sortis a divide-and-
conquer algorithm that cuts
an array into smaller and
smaller sublists until sorting
them is arbitrary

= Invented by John von
Neumannin 1945 (19 BBW)

19

20

Merge Sort Merge Sort

= Because Merge-Sort defines a dividing the list into
a list into smaller instances of itself, it naturally is
solved using recursion

= Each recursive step cuts the list into two sublists
until....
« the list has 2 elements — arbitrary swap
« the list has 1 element — which is, well, sorted

Sacramano St ook - 052 120

= As the recursion bubbles up, each sub list is
merged using the algorithm we just discussed

= Divide-and-conquer algorithms ultimately result in
O(n log n)

= Since an auxiliary array is required for the merge
process, Merge-Sort, while fast, has O(n) auxiliary
storage requirements

Sacraments St - ook - G5 120

21

22

Merge Sort Example: Recurse down Sort Merge Sort Example: Merge Up

oooooooa
Oooo| (Dooo
oo/ oo (oo o

00| oo (oe| oo
0000 [oDeo
00000000

‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘

23

24

Merge Sort Summary

Merge Sort

Time Average O(n log n)

Time Best O(n log n)

Time Worst O(n log n)

Aucxiliary space O(n)

Stable Yes — Equal element order preserved
Online? Yes — New data > new sublist

Oh, | am getting dizzy....

25

Quick Sort

Quick-Sort is a divide-and-
conquer algorithm that rotates
values around a pivot

Invented by C. A. R. Hoare in
1959 (5 BBW)

Even faster than both Merge
Sort and Heap Sort

... but has a weaknesses

Sacramano St ook - 052 120

26

How it Works

= Like Merge-Sort, the array is
broken down into smaller and
smaller sub-lists

= However, before recursion

» avalue pis chosen in the sub-list
as the pivot value

« smaller items are moved before it
« larger items are moved after it

Fon 2z Sacraments St - ook - G5 120

27

Choosing a Pivot

Pivot can be any element in the sub-array

...we need one actual value to compare
This pivot is used to partition the values
Different versions use different pivots

« firstitem in the sub-array

+ end item in the sub-array

« the midpoint of the sub-array

+ random value in the sub-array

Sacramano St ook - 052 120

28

Partitioning the Values

= After the pivot p is selected, all elements are moved

= Two, separate, loops move through the elements and
swaps elements less than/greater than the pivot

= Theresultis...
» sub-array L contains items less than p
« sub-array G contains items greater than p

Fon 2z Sacrament St - Cook - G5 120 Bl

30

Partitioning (pivot is the first item)

Partitioning the Values

> ullll
IIIIlII Inl
—

= Note: neither L or G is sorted yet
= These will be called recursively by Quick-Sort

= Moving the elements, in-place, can look a tad ugly code-
wise, but the logic is straight forward

]IIIlII e ||I||I|

31

Partition Algorithm

= The sub-lists are stored in the original array — so there's
no auxiliary storage
= The algorithm maintains two pointers

« first moves left to right and keeps track of the values that are
too big

« second moves right to left and keeps track of the values that
are too small

= Each moves independently

32

Partition Algorithm

= First move the Too Big pointer until a value is
found that is bigger than the pivot

= Then move the Too Small pointer until a value is
found that is smaller than Pivot

= Then, these values are swapped
= When the two pointers collide, we are done

Fon 2z Sacraments St - ook - G5 120 =

33

Example Partition

= In this example, we pivot at the start of the array

= Any value can be used...
« but it will have to be swapped to the start before the algorithm runs
« this "saves" the pivot for later

0ODEOO6E0a0

34

Quick Sort Algorithm

While (tooBig < toosmall) H
«
while (arrayltoopig] <= arraylpivot])
«
tooBig +;

)

while (arrayltoosmall] > arraylpivot])
«
toosmall ——;

)

if (tooBig < toosmall)

//swap array[toosmall] and array[pivot]
//Recurse Quicksort on both L and G

Fon 2z Sacrament St - Cook - G5 120 =

35

36

Example: Pivot is First

Too

=

0000000000

T

Too
Small

Example: Move Too Big

Too
Big

4

00000000000

f

Too
Small

Example: Move Too Big

Too
Big

4

- [[G|) @9 8 e [=)

T

Too
Small

Example: Move Too Big

Too

Ry

00000000000

f

Too
Small

Sacraments St - ook - G5 120

Example: Now, Move Too Small

Too
Big

4

QE00BOLasa

1

Too
Small

Example: Found (Immediately)

Too
Big

4

00000000000

Ten

Too
Small

Sacrament St - Cook - G5 120

Example: Swap Values

Example: Keep going... Move Too Big

Too
Big

4

0000000000

T

Too
Small

Too
Big

000B0000000

Too
Small

43

Example: Too Big Found

44

Example: Move Too Small

Too

=y

- [1] =) 1) 9 8 = [G

T

Too
Small

Too
Eﬂ“
00000000000

Too
Small

45

Example: Too Small Found

46

Example: Swap Values

Too
Big

4

- {1l =) 1) 9 8 = [

Too
Small

8-

Too
Big

el o el = L L)

Too
Small

47

48

Example: Keep going... Move Too Big

Example: Keep going... Move Too Big

Too
Big

4

0000000000

f

Too
Small

Too
Big

00000000000

Too
Small

49

Example: Too Big Found

50

Example: Move Too Small

Too

=y

- (L] = [)| R |G G

f

Too
Small

Too
Big

0000E00O000a

Too
Small

Sacraments St - ook - G5 120

51

Example: Too Small Found

52

Example: Swap Values

Too
Big

4

- (L] = [)| R 0 | G G

Too
Small

8-

Too
Big

000DE00O000a

Too
Small

53

54

Example: Keep going... Move Too Big

Example: Too Big Found

Too
Big

4

00000008600

f

Too
Small

Too
=
00000008600

Too
Small

55

Example: Move Too Small

56

Example: Move Too Small

Too
Big

4

00086068000

f

Too
Small

Too
Big

- |1l [60 68 R

Too
Small

57

Example: Pointers Passed Each Other

58

Example: Swap Pivot & Too Small

Too
Big

4

00086068000

Too
Big

00000008000

59

60

10

Example: Done (with this pass)

Recursion Time!

0000000600

= Notice: all the items before the pivot are smaller and all
the items after are a larger

= Now, we can recurse both sides
= The result is a sorted array

DOBeee a /et

61

Quick Sort Example

62

Quick Sort Example

[« @] « J&)] e IS] o [0

maan

OaDnbana

- [-~ |SIEE

oooeo [ooeo

63

Quick Sort Example

64

Quick Sort: Worst Case

Sorted on
base case

0000060 an

In the main array from
the first partition

o s Sacramano St ook - 052 120

= Assume we get array that is
already sorted

= This can cause huge
problems!

= Shockingly, the efficiently of
this sort can degenerate if we
are not careful

65

66

11

Quick Sort: Worst Case

= |f the first item is the pivot

+ a sorted array will cause both the pointers will pass
simply pass each other

+ one sub-array will be empty, the second will contains
ALL the elements — 1

= |f the last item is the pivot

+ reverse sorted array will have the same effect

Quick Sort: Worst Case

Too

=

0000000E000

Too
Small

67

Worst Case: Move Too Big

Too Found
Big immediately

000Oo000E000

Too
Small

68

Worst Case: Now, Move Too Small

Too
Big

 « [e] |)| 8 l ol]

Too
Small

Sacraments St - ook - G5 120

69

Worst Case: Pointers Passed

Too
Big

000O0000E000

Too
Small

70

Worst Case: Recurse on n-1

Uh, oh! We will now
recurse on all n - 1 items!

0DO0B0E000

Sacrament St - Cook - G5 120

71

72

12

Quick Sort Analysis How Can We Avoid This?

= So, in the worst case, Quick
Sort is O(n?)

= ... and, given all the work it
has to do with the pointers, it
gets beat by Bubble Sort

If you don't know if the array
is randomized, manually
randomize the values

O(n) — run i from first to last
element and swap array] i]
and array [random]

Quick Sort Summary

Time Average O(n log n)

Time Best O(n log n)

Time Worst o(n?)

Auxiliary space o(1)

Stable No — Equal element order not preserved
Online? No

74

13

