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Non-Comparative 

Sorting

Part 7

Dictionaries

the "ADT"… not in a human one!

Moving Past Arrays....
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 A collection is general term 
for a group of data items

 So, this can include arrays, 
linked lists, stacks, queues, 
and much more

 So far, we have just used 
arrays – which are indexed by 
an integer

 Are there are other ways to 

index data? 

 Yes.

• any object can be used as an 

index

• e.g. strings, integers, pictures, 

etc...

Moving Past Arrays....
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Dictionaries

 Collections of objects indexed 
by other objects are called 
dictionaries

 They have a few alternative 
names... 

• keyed tables

• symbol tables 

• maps 
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Dictionary Terminology

 The objects that are used for 

indices are called keys

 The objects that are 

accessed using the key are 

called values 
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 There are numerous 
approaches to implementing 
dictionaries

 Key-value structure

• a class stores a key object and 
value object

• this can be stored in any data 
structure we have covered

Implementing Dictionaries 

Spring 2024 Sacramento State - Cook - CSc 130 7

 Using a linked list

• adding takes O(1)

• access is O(n)

 Unsorted array

• add is O(n) – have to resize

• access is O(n)

 Sorted array

• add is O(n) – have to resize

• access is O(log n)

Implementing Dictionaries 
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 So, adding in to an array is O(n)

 Arrays seem like a poor approach

 Is there a better way to store dictionary data? 

Keeping adding close to O(1)?

 … and keep access at O(log n)

 Perhaps, we will learn that soon….

This Ain't So Good
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 Dictionaries...

• have a single key

• that key is the only way to access data

• key returns a single value 

 Databases...

• may have multiple keys
(e.g. SSN, name, age, etc…)

• may return multiple values

Databases vs. Dictionaries
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Bucket Sort

The key to sorting is the keys

Bucket Sort
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 The Bucket Sort is a fast 

sorting algorithm that is non-

comparative.

 Rather than comparing 

objects, it uses mathematical 
properties of their keys
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Bucket Sort
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 The most basic algorithm 
creates a "bucket" for each of 
the different key values

 This "bucket" often takes the 
form of a queue or list

 Each item in the array is 
placed into the buckets based 
on their key

Bucket Sort
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 Then, each bucket is 

emptied, in order, back into 

the array

 This sorts the items, but 
algorithm has considerable 
storage requirements – often 

making it impactable

for (i = minKey; i <= maxKey; i++)

bucket[i] = new Queue()

end for

for (i = 0; i < count; i++)

bucket[array[i].key].enqueue(array[i])

end for

Bucket Sort – Fill the Buckets

Create Buckets

Fill buckets
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j = 0;

for (i = minKey; i <= maxKey; i++)

while ( ! bucket[i].isEmpty )

array[j] = bucket[i].dequeue()

j++

end while

end for

Bucket Sort – Store Back Into Array

Empty buckets, in 

order, to array

Spring 2024 Sacramento State - Cook - CSc 130 16

0 1 2 3 4 5 6 7 8 9

Bucket Sort: Scatter to Buckets

4 1 5 4 2 9 1 6 27 5 7
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0 1 2 3 4 5 6 7 8 9

Bucket Sort: Buckets Filled

41 5

4

2 9

1

6

2

7

5 7
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0 1 2 3 4 5 6 7 8 9

Bucket Sort: Gather Into Array

41 5

4

2 9

1

6

2

7

5 7
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Small to large

0 1 2 3 4 5 6 7 8 9

Bucket Sort: Complete

41 542 91 62 75 7
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Too Many Buckets!
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 If we use a bucket for each 
key, the number of buckets 
can be huge!

 e.g. 32-bit key requires 
4,294,967,296 buckets 

 So, we need to choose 
buckets will accept multiple 
keys within a range

21

Too Many Buckets
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 Naturally, these buckets will 

contain unsorted keys

 So, we can sort the bucket 
once it is full

 … then empty the sorted 

buckets back into the array
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A Better Approach….
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1. Fill each bucket with a range 

of keys

2. Sort each bucket

3. Empty the buckets, in order, 
into the array

23

Bucket Sort: Fill Buckets

4 1 19 10 12 3 2 6 87 11 15
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0 - 4 5 - 9 10 - 14 15 - 19

Bucket Sort: Fill Buckets
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4 1 19 10 12 3 2 6 87 11 15

0 - 4 5 - 9 10 - 14 15 - 19

Bucket Sort: Buckets Filled
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Bucket Sort: Sort Buckets
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4

1

19
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Bucket Sort: Emptied Into Array
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41 1910 1232 6 87 11 15

 Proxmap Sort

• almost identical to the basic Bucket Sort

• items are sorted immediately when placed in the bucket –
usually an Insertion Sort

 Histogram Sort (aka Counting Sort)

• does an initial scan of the array and creates buckets the 
exact size that they will be filled

• greatly minimalizes overhead

Other Bucket Sort Variations
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 Postman's Sort

• very similar to the next sort we cover: Radix

• sorts items by "category" of the key

 Shuffle Sort

• array is recursively sub-divided, sorted, and 
merged/concatenated when complete

• 2-bucket Shuffle Sort is essentially a Quick Sort with the pivot 
acting as divider between the two buckets

Other Bucket Sort Variations
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Bucket Sort

O(n + (n2 / b) + b)  where b is the # of bucketsTime Average

O(n)  when b ≈ nTime Best

O(n2)  if Insertion Sort is usedTime Worst

O(b + n)Auxiliary space

YesStable

Yes (bucket filling stage only)Online?
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Bucket Summary

Computer Science to the rescue!

The 1890 

Census Crisis

 United States Constitution:

• population must be calculated 
every 10 years

• used in the House of 
Representatives

 Before the 1890 Census 
Crisis, all this counting was 
done by hand…

The 1890 Census Crisis

Spring 2024 Sacramento State - Cook - CSc 130 33

 There were too many people…

• 1880 Census barely made it within the 10-year window

• U.S. population had continued to grow, and it could not

be counted in 10 years

 The U.S. was still healing from the Civil War… 

failing to represent each state fairly could have 
resulted in another war

The 1890 Census Crisis
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Herman Hollerith to the Rescue

 Herman Hollerith developed a 
machine (and concepts) that 
saved the U.S.

 The machine used electricity 
(a new idea for the time)

 Could automatically read 
cards and quickly, accurately 
tabulate results
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Inventing a Solution for Sorting
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 Invented the idea to Bucket 

Sort on each digit of a key

 Use multiple passes starting 

with the 1's digit and move 

upwards

31 32
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Herman Hollerith
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 His system was used for the 

1890 Census 

 And, it only took 9 months!

 Ever since, some form of 
tabulating machine has been 

used

Herman Hollerith & IBM
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 The World took notice & 
wanted his machines

 Hollerith founded the 
Tabulating Machine 
Company

 Later it was renamed 
International Business 
Machines

A dance of buckets

Radix Sort

Radix Sort
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 The Radix Sort was 

developed by Herman 

Hollerith in 1887 (77 BBW)

 The sort is completely non-

comparative

 It uses a multiple Bucket Sort 

passes to sort data

Radix Sort
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 Hollerith observed:

• Bucket Sort was stable

• i.e. items did not change 

relative positions

 He took advantage of this to 

sort data regardless of the 
size of the key
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 Radix Sort uses a Bucket Sort on each digit on the 

key 

 This is done from the Least Significant Digit (LSD) 
to the most (MSD)

 After each pass, the buckets are the emptied into 

another set of buckets based on the next digit 

How it Works
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 So, the number of buckets is equal to the number 

of possible digits

 Different "digits" can also be used:

• base-10 digits for numbers (10 buckets)

• or a single bit in the key (2 buckets)

• or several binary bits as a group – e.g. every 4 bits for 

24 = 16 buckets

How it Works
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Radix Sort Example
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0 1 2 3 4 5 6 7 8 9

54 21 75 34 72 19 51 06 1297 45 07

0 1 2 3 4 5 6 7 8 9

First Digit: Scatter into Buckets

54 21 75 34 72 19 51 06 1297 45 07
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First Digit: Scattered
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0 1 2 3 4 5 6 7 8 9

5421 75

34

72 19

51

06

12

97

45 07

Small to large

0 1 2 3 4 5 6 7 8 9

First Digit: Gather First Digit

5421 75

34

72 19

51

06

12

97

45 07
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0 1 2 3 4 5 6 7 8 9

First Digit: Sorted

5421 753472 1951 0612 9745 07
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0 1 2 3 4 5 6 7 8 9

Second Digit: Scatter into Buckets

5421 753472 1951 0612 9745 07
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0 1 2 3 4 5 6 7 8 9

Second Digit: Scattered

54

21

75

34 72

19

5106 12 9745

07
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Note: Each bucket is sorted. The first pass sorted the first digit.

0 1 2 3 4 5 6 7 8 9

Second Digit: Gather

54

21

75

34 72

19

5106 12 9745

07
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Small to large

Second Digit: Completed
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0 1 2 3 4 5 6 7 8 9

5421 7534 7219 5106 12 974507

Example 3: LSD Base 10 

Sorted on first digit

Sorted on first 2 digits

4992 11 74 9042 4750 16 21

499211 7490 42 4750 1621

49 9211 74 9042 47 5016 21
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53 54
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Example 3: LSD Base 10 

279916 530 209 101042 404451

279916530 209101 042 404451

279916 530209101 042404 451

279 916530209101042 404 451

Sorted on first 3 digits

Sorted on first 2 digits
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 How many passes? 

• the algorithm will pass over the array equal to the total 

number of digits in the key (k) 

• e.g. for, a phone number, k = 10

 So…

• we will exam n array elements a total k number of times

• so, it will be O(k × n)

Time Complexity of Radix Sort
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 How many buckets?

• we need auxiliary storage for each array element and for 

a bucket for each digit

• for a base-10 number, the number of buckets b = 10

 So…

• we will need an extra n array elements and b buckets

• so, it will be O(b + n)

Auxiliary Storage of Radix Sort
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Radix Sort

O(k × n)  where k is the # of key digitsTime Average

O(k × n)  actually a slow O(n)Time Best

O(k × n)  actually a slow O(n)Time Worst

O(b + n)Auxiliary space

YesStable

NoOnline?
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Radix Summary

55 56

57 58


