
1

Non-Comparative

Sorting

Part 7

Dictionaries

the "ADT"… not in a human one!

Moving Past Arrays....

Spring 2024 Sacramento State - Cook - CSc 130 3

 A collection is general term
for a group of data items

 So, this can include arrays,
linked lists, stacks, queues,
and much more

 So far, we have just used
arrays – which are indexed by
an integer

 Are there are other ways to

index data?

 Yes.

• any object can be used as an

index

• e.g. strings, integers, pictures,

etc...

Moving Past Arrays....

Spring 2024 Sacramento State - Cook - CSc 130 4

Dictionaries

 Collections of objects indexed
by other objects are called
dictionaries

 They have a few alternative
names...

• keyed tables

• symbol tables

• maps

Spring 2024 Sacramento State - Cook - CSc 130 5

Dictionary Terminology

 The objects that are used for

indices are called keys

 The objects that are

accessed using the key are

called values

Spring 2024 Sacramento State - Cook - CSc 130 6

1 2

3 4

5 6

2

 There are numerous
approaches to implementing
dictionaries

 Key-value structure

• a class stores a key object and
value object

• this can be stored in any data
structure we have covered

Implementing Dictionaries

Spring 2024 Sacramento State - Cook - CSc 130 7

 Using a linked list

• adding takes O(1)

• access is O(n)

 Unsorted array

• add is O(n) – have to resize

• access is O(n)

 Sorted array

• add is O(n) – have to resize

• access is O(log n)

Implementing Dictionaries

Spring 2024 Sacramento State - Cook - CSc 130 8

 So, adding in to an array is O(n)

 Arrays seem like a poor approach

 Is there a better way to store dictionary data?

Keeping adding close to O(1)?

 … and keep access at O(log n)

 Perhaps, we will learn that soon….

This Ain't So Good

Spring 2024 Sacramento State - Cook - CSc 130 9

 Dictionaries...

• have a single key

• that key is the only way to access data

• key returns a single value

 Databases...

• may have multiple keys
(e.g. SSN, name, age, etc…)

• may return multiple values

Databases vs. Dictionaries

Spring 2024 Sacramento State - Cook - CSc 130 10

Bucket Sort

The key to sorting is the keys

Bucket Sort

Spring 2024 Sacramento State - Cook - CSc 130 12

 The Bucket Sort is a fast

sorting algorithm that is non-

comparative.

 Rather than comparing

objects, it uses mathematical
properties of their keys

7 8

9 10

11 12

3

Bucket Sort

Spring 2024 Sacramento State - Cook - CSc 130 13

 The most basic algorithm
creates a "bucket" for each of
the different key values

 This "bucket" often takes the
form of a queue or list

 Each item in the array is
placed into the buckets based
on their key

Bucket Sort

Spring 2024 Sacramento State - Cook - CSc 130 14

 Then, each bucket is

emptied, in order, back into

the array

 This sorts the items, but
algorithm has considerable
storage requirements – often

making it impactable

for (i = minKey; i <= maxKey; i++)

bucket[i] = new Queue()

end for

for (i = 0; i < count; i++)

bucket[array[i].key].enqueue(array[i])

end for

Bucket Sort – Fill the Buckets

Create Buckets

Fill buckets

Spring 2024 Sacramento State - Cook - CSc 130 15

j = 0;

for (i = minKey; i <= maxKey; i++)

while (! bucket[i].isEmpty)

array[j] = bucket[i].dequeue()

j++

end while

end for

Bucket Sort – Store Back Into Array

Empty buckets, in

order, to array

Spring 2024 Sacramento State - Cook - CSc 130 16

0 1 2 3 4 5 6 7 8 9

Bucket Sort: Scatter to Buckets

4 1 5 4 2 9 1 6 27 5 7

Spring 2024 Sacramento State - Cook - CSc 130 17

0 1 2 3 4 5 6 7 8 9

Bucket Sort: Buckets Filled

41 5

4

2 9

1

6

2

7

5 7

Spring 2024 Sacramento State - Cook - CSc 130 18

13 14

15 16

17 18

4

0 1 2 3 4 5 6 7 8 9

Bucket Sort: Gather Into Array

41 5

4

2 9

1

6

2

7

5 7

Spring 2024 Sacramento State - Cook - CSc 130 19

Small to large

0 1 2 3 4 5 6 7 8 9

Bucket Sort: Complete

41 542 91 62 75 7

Spring 2024 Sacramento State - Cook - CSc 130 20

Too Many Buckets!

Spring 2024 Sacramento State - Cook - CSc 130 21

 If we use a bucket for each
key, the number of buckets
can be huge!

 e.g. 32-bit key requires
4,294,967,296 buckets

 So, we need to choose
buckets will accept multiple
keys within a range

21

Too Many Buckets

Spring 2024 Sacramento State - Cook - CSc 130 22

 Naturally, these buckets will

contain unsorted keys

 So, we can sort the bucket
once it is full

 … then empty the sorted

buckets back into the array

22

A Better Approach….

Spring 2024 Sacramento State - Cook - CSc 130 23

1. Fill each bucket with a range

of keys

2. Sort each bucket

3. Empty the buckets, in order,
into the array

23

Bucket Sort: Fill Buckets

4 1 19 10 12 3 2 6 87 11 15

Spring 2024 Sacramento State - Cook - CSc 130 24

0 - 4 5 - 9 10 - 14 15 - 19

19 20

21 22

23 24

5

0 - 4 5 - 9 10 - 14 15 - 19

Bucket Sort: Fill Buckets

Spring 2024 Sacramento State - Cook - CSc 130 25

4 1 19 10 12 3 2 6 87 11 15

0 - 4 5 - 9 10 - 14 15 - 19

Bucket Sort: Buckets Filled

Spring 2024 Sacramento State - Cook - CSc 130 26

4

1

1910

12

3

2

6

8

7

11

15

0 - 4 5 - 9 10 - 14 15 - 19

Bucket Sort: Sort Buckets

Spring 2024 Sacramento State - Cook - CSc 130 27

4

1

19

10

123

2

6

8

7 11

15

0 - 4 5 - 9 10 - 14 15 - 19

Bucket Sort: Emptied Into Array

Spring 2024 Sacramento State - Cook - CSc 130 28

41 1910 1232 6 87 11 15

 Proxmap Sort

• almost identical to the basic Bucket Sort

• items are sorted immediately when placed in the bucket –
usually an Insertion Sort

 Histogram Sort (aka Counting Sort)

• does an initial scan of the array and creates buckets the
exact size that they will be filled

• greatly minimalizes overhead

Other Bucket Sort Variations

Spring 2024 Sacramento State - Cook - CSc 130 29

 Postman's Sort

• very similar to the next sort we cover: Radix

• sorts items by "category" of the key

 Shuffle Sort

• array is recursively sub-divided, sorted, and
merged/concatenated when complete

• 2-bucket Shuffle Sort is essentially a Quick Sort with the pivot
acting as divider between the two buckets

Other Bucket Sort Variations

Spring 2024 Sacramento State - Cook - CSc 130 30

25 26

27 28

29 30

6

Bucket Sort

O(n + (n2 / b) + b) where b is the # of bucketsTime Average

O(n) when b ≈ nTime Best

O(n2) if Insertion Sort is usedTime Worst

O(b + n)Auxiliary space

YesStable

Yes (bucket filling stage only)Online?

Spring 2024 Sacramento State - Cook - CSc 130 31

Bucket Summary

Computer Science to the rescue!

The 1890

Census Crisis

 United States Constitution:

• population must be calculated
every 10 years

• used in the House of
Representatives

 Before the 1890 Census
Crisis, all this counting was
done by hand…

The 1890 Census Crisis

Spring 2024 Sacramento State - Cook - CSc 130 33

 There were too many people…

• 1880 Census barely made it within the 10-year window

• U.S. population had continued to grow, and it could not

be counted in 10 years

 The U.S. was still healing from the Civil War…

failing to represent each state fairly could have
resulted in another war

The 1890 Census Crisis

Spring 2024 Sacramento State - Cook - CSc 130 34

Herman Hollerith to the Rescue

 Herman Hollerith developed a
machine (and concepts) that
saved the U.S.

 The machine used electricity
(a new idea for the time)

 Could automatically read
cards and quickly, accurately
tabulate results

Spring 2024 Sacramento State - Cook - CSc 130 35

Inventing a Solution for Sorting

Spring 2024 Sacramento State - Cook - CSc 130 36

 Invented the idea to Bucket

Sort on each digit of a key

 Use multiple passes starting

with the 1's digit and move

upwards

31 32

33 34

35 36

7

Herman Hollerith

Spring 2024 Sacramento State - Cook - CSc 130 37

 His system was used for the

1890 Census

 And, it only took 9 months!

 Ever since, some form of
tabulating machine has been

used

Herman Hollerith & IBM

Spring 2024 Sacramento State - Cook - CSc 130 38

 The World took notice &
wanted his machines

 Hollerith founded the
Tabulating Machine
Company

 Later it was renamed
International Business
Machines

A dance of buckets

Radix Sort

Radix Sort

Spring 2024 Sacramento State - Cook - CSc 130 41

 The Radix Sort was

developed by Herman

Hollerith in 1887 (77 BBW)

 The sort is completely non-

comparative

 It uses a multiple Bucket Sort

passes to sort data

Radix Sort

Spring 2024 Sacramento State - Cook - CSc 130 42

 Hollerith observed:

• Bucket Sort was stable

• i.e. items did not change

relative positions

 He took advantage of this to

sort data regardless of the
size of the key

37 38

39 40

41 42

8

 Radix Sort uses a Bucket Sort on each digit on the

key

 This is done from the Least Significant Digit (LSD)
to the most (MSD)

 After each pass, the buckets are the emptied into

another set of buckets based on the next digit

How it Works

Spring 2024 Sacramento State - Cook - CSc 130 43

 So, the number of buckets is equal to the number

of possible digits

 Different "digits" can also be used:

• base-10 digits for numbers (10 buckets)

• or a single bit in the key (2 buckets)

• or several binary bits as a group – e.g. every 4 bits for

24 = 16 buckets

How it Works

Spring 2024 Sacramento State - Cook - CSc 130 44

Radix Sort Example

Spring 2024 Sacramento State - Cook - CSc 130 45

0 1 2 3 4 5 6 7 8 9

54 21 75 34 72 19 51 06 1297 45 07

0 1 2 3 4 5 6 7 8 9

First Digit: Scatter into Buckets

54 21 75 34 72 19 51 06 1297 45 07

Spring 2024 Sacramento State - Cook - CSc 130 46

First Digit: Scattered

Spring 2024 Sacramento State - Cook - CSc 130 47

0 1 2 3 4 5 6 7 8 9

5421 75

34

72 19

51

06

12

97

45 07

Small to large

0 1 2 3 4 5 6 7 8 9

First Digit: Gather First Digit

5421 75

34

72 19

51

06

12

97

45 07

Spring 2024 Sacramento State - Cook - CSc 130 48

43 44

45 46

47 48

9

0 1 2 3 4 5 6 7 8 9

First Digit: Sorted

5421 753472 1951 0612 9745 07

Spring 2024 Sacramento State - Cook - CSc 130 49

0 1 2 3 4 5 6 7 8 9

Second Digit: Scatter into Buckets

5421 753472 1951 0612 9745 07

Spring 2024 Sacramento State - Cook - CSc 130 50

0 1 2 3 4 5 6 7 8 9

Second Digit: Scattered

54

21

75

34 72

19

5106 12 9745

07

Spring 2024 Sacramento State - Cook - CSc 130 51

Note: Each bucket is sorted. The first pass sorted the first digit.

0 1 2 3 4 5 6 7 8 9

Second Digit: Gather

54

21

75

34 72

19

5106 12 9745

07

Spring 2024 Sacramento State - Cook - CSc 130 52

Small to large

Second Digit: Completed

Spring 2024 Sacramento State - Cook - CSc 130 53

0 1 2 3 4 5 6 7 8 9

5421 7534 7219 5106 12 974507

Example 3: LSD Base 10

Sorted on first digit

Sorted on first 2 digits

4992 11 74 9042 4750 16 21

499211 7490 42 4750 1621

49 9211 74 9042 47 5016 21

Spring 2024 Sacramento State - Cook - CSc 130 54

49 50

51 52

53 54

10

Example 3: LSD Base 10

279916 530 209 101042 404451

279916530 209101 042 404451

279916 530209101 042404 451

279 916530209101042 404 451

Sorted on first 3 digits

Sorted on first 2 digits

Spring 2024 Sacramento State - Cook - CSc 130 55

 How many passes?

• the algorithm will pass over the array equal to the total

number of digits in the key (k)

• e.g. for, a phone number, k = 10

 So…

• we will exam n array elements a total k number of times

• so, it will be O(k × n)

Time Complexity of Radix Sort

Spring 2024 Sacramento State - Cook - CSc 130 56

 How many buckets?

• we need auxiliary storage for each array element and for

a bucket for each digit

• for a base-10 number, the number of buckets b = 10

 So…

• we will need an extra n array elements and b buckets

• so, it will be O(b + n)

Auxiliary Storage of Radix Sort

Spring 2024 Sacramento State - Cook - CSc 130 57

Radix Sort

O(k × n) where k is the # of key digitsTime Average

O(k × n) actually a slow O(n)Time Best

O(k × n) actually a slow O(n)Time Worst

O(b + n)Auxiliary space

YesStable

NoOnline?

Spring 2024 Sacramento State - Cook - CSc 130 58

Radix Summary

55 56

57 58

