
1

Non-Comparative

Sorting

Part 7

Dictionaries

the "ADT"… not in a human one!

Moving Past Arrays....

Spring 2024 Sacramento State - Cook - CSc 130 3

 A collection is general term
for a group of data items

 So, this can include arrays,
linked lists, stacks, queues,
and much more

 So far, we have just used
arrays – which are indexed by
an integer

 Are there are other ways to

index data?

 Yes.

• any object can be used as an

index

• e.g. strings, integers, pictures,

etc...

Moving Past Arrays....

Spring 2024 Sacramento State - Cook - CSc 130 4

Dictionaries

 Collections of objects indexed
by other objects are called
dictionaries

 They have a few alternative
names...

• keyed tables

• symbol tables

• maps

Spring 2024 Sacramento State - Cook - CSc 130 5

Dictionary Terminology

 The objects that are used for

indices are called keys

 The objects that are

accessed using the key are

called values

Spring 2024 Sacramento State - Cook - CSc 130 6

1 2

3 4

5 6

2

 There are numerous
approaches to implementing
dictionaries

 Key-value structure

• a class stores a key object and
value object

• this can be stored in any data
structure we have covered

Implementing Dictionaries

Spring 2024 Sacramento State - Cook - CSc 130 7

 Using a linked list

• adding takes O(1)

• access is O(n)

 Unsorted array

• add is O(n) – have to resize

• access is O(n)

 Sorted array

• add is O(n) – have to resize

• access is O(log n)

Implementing Dictionaries

Spring 2024 Sacramento State - Cook - CSc 130 8

 So, adding in to an array is O(n)

 Arrays seem like a poor approach

 Is there a better way to store dictionary data?

Keeping adding close to O(1)?

 … and keep access at O(log n)

 Perhaps, we will learn that soon….

This Ain't So Good

Spring 2024 Sacramento State - Cook - CSc 130 9

 Dictionaries...

• have a single key

• that key is the only way to access data

• key returns a single value

 Databases...

• may have multiple keys
(e.g. SSN, name, age, etc…)

• may return multiple values

Databases vs. Dictionaries

Spring 2024 Sacramento State - Cook - CSc 130 10

Bucket Sort

The key to sorting is the keys

Bucket Sort

Spring 2024 Sacramento State - Cook - CSc 130 12

 The Bucket Sort is a fast

sorting algorithm that is non-

comparative.

 Rather than comparing

objects, it uses mathematical
properties of their keys

7 8

9 10

11 12

3

Bucket Sort

Spring 2024 Sacramento State - Cook - CSc 130 13

 The most basic algorithm
creates a "bucket" for each of
the different key values

 This "bucket" often takes the
form of a queue or list

 Each item in the array is
placed into the buckets based
on their key

Bucket Sort

Spring 2024 Sacramento State - Cook - CSc 130 14

 Then, each bucket is

emptied, in order, back into

the array

 This sorts the items, but
algorithm has considerable
storage requirements – often

making it impactable

for (i = minKey; i <= maxKey; i++)

bucket[i] = new Queue()

end for

for (i = 0; i < count; i++)

bucket[array[i].key].enqueue(array[i])

end for

Bucket Sort – Fill the Buckets

Create Buckets

Fill buckets

Spring 2024 Sacramento State - Cook - CSc 130 15

j = 0;

for (i = minKey; i <= maxKey; i++)

while (! bucket[i].isEmpty)

array[j] = bucket[i].dequeue()

j++

end while

end for

Bucket Sort – Store Back Into Array

Empty buckets, in

order, to array

Spring 2024 Sacramento State - Cook - CSc 130 16

0 1 2 3 4 5 6 7 8 9

Bucket Sort: Scatter to Buckets

4 1 5 4 2 9 1 6 27 5 7

Spring 2024 Sacramento State - Cook - CSc 130 17

0 1 2 3 4 5 6 7 8 9

Bucket Sort: Buckets Filled

41 5

4

2 9

1

6

2

7

5 7

Spring 2024 Sacramento State - Cook - CSc 130 18

13 14

15 16

17 18

4

0 1 2 3 4 5 6 7 8 9

Bucket Sort: Gather Into Array

41 5

4

2 9

1

6

2

7

5 7

Spring 2024 Sacramento State - Cook - CSc 130 19

Small to large

0 1 2 3 4 5 6 7 8 9

Bucket Sort: Complete

41 542 91 62 75 7

Spring 2024 Sacramento State - Cook - CSc 130 20

Too Many Buckets!

Spring 2024 Sacramento State - Cook - CSc 130 21

 If we use a bucket for each
key, the number of buckets
can be huge!

 e.g. 32-bit key requires
4,294,967,296 buckets

 So, we need to choose
buckets will accept multiple
keys within a range

21

Too Many Buckets

Spring 2024 Sacramento State - Cook - CSc 130 22

 Naturally, these buckets will

contain unsorted keys

 So, we can sort the bucket
once it is full

 … then empty the sorted

buckets back into the array

22

A Better Approach….

Spring 2024 Sacramento State - Cook - CSc 130 23

1. Fill each bucket with a range

of keys

2. Sort each bucket

3. Empty the buckets, in order,
into the array

23

Bucket Sort: Fill Buckets

4 1 19 10 12 3 2 6 87 11 15

Spring 2024 Sacramento State - Cook - CSc 130 24

0 - 4 5 - 9 10 - 14 15 - 19

19 20

21 22

23 24

5

0 - 4 5 - 9 10 - 14 15 - 19

Bucket Sort: Fill Buckets

Spring 2024 Sacramento State - Cook - CSc 130 25

4 1 19 10 12 3 2 6 87 11 15

0 - 4 5 - 9 10 - 14 15 - 19

Bucket Sort: Buckets Filled

Spring 2024 Sacramento State - Cook - CSc 130 26

4

1

1910

12

3

2

6

8

7

11

15

0 - 4 5 - 9 10 - 14 15 - 19

Bucket Sort: Sort Buckets

Spring 2024 Sacramento State - Cook - CSc 130 27

4

1

19

10

123

2

6

8

7 11

15

0 - 4 5 - 9 10 - 14 15 - 19

Bucket Sort: Emptied Into Array

Spring 2024 Sacramento State - Cook - CSc 130 28

41 1910 1232 6 87 11 15

 Proxmap Sort

• almost identical to the basic Bucket Sort

• items are sorted immediately when placed in the bucket –
usually an Insertion Sort

 Histogram Sort (aka Counting Sort)

• does an initial scan of the array and creates buckets the
exact size that they will be filled

• greatly minimalizes overhead

Other Bucket Sort Variations

Spring 2024 Sacramento State - Cook - CSc 130 29

 Postman's Sort

• very similar to the next sort we cover: Radix

• sorts items by "category" of the key

 Shuffle Sort

• array is recursively sub-divided, sorted, and
merged/concatenated when complete

• 2-bucket Shuffle Sort is essentially a Quick Sort with the pivot
acting as divider between the two buckets

Other Bucket Sort Variations

Spring 2024 Sacramento State - Cook - CSc 130 30

25 26

27 28

29 30

6

Bucket Sort

O(n + (n2 / b) + b) where b is the # of bucketsTime Average

O(n) when b ≈ nTime Best

O(n2) if Insertion Sort is usedTime Worst

O(b + n)Auxiliary space

YesStable

Yes (bucket filling stage only)Online?

Spring 2024 Sacramento State - Cook - CSc 130 31

Bucket Summary

Computer Science to the rescue!

The 1890

Census Crisis

 United States Constitution:

• population must be calculated
every 10 years

• used in the House of
Representatives

 Before the 1890 Census
Crisis, all this counting was
done by hand…

The 1890 Census Crisis

Spring 2024 Sacramento State - Cook - CSc 130 33

 There were too many people…

• 1880 Census barely made it within the 10-year window

• U.S. population had continued to grow, and it could not

be counted in 10 years

 The U.S. was still healing from the Civil War…

failing to represent each state fairly could have
resulted in another war

The 1890 Census Crisis

Spring 2024 Sacramento State - Cook - CSc 130 34

Herman Hollerith to the Rescue

 Herman Hollerith developed a
machine (and concepts) that
saved the U.S.

 The machine used electricity
(a new idea for the time)

 Could automatically read
cards and quickly, accurately
tabulate results

Spring 2024 Sacramento State - Cook - CSc 130 35

Inventing a Solution for Sorting

Spring 2024 Sacramento State - Cook - CSc 130 36

 Invented the idea to Bucket

Sort on each digit of a key

 Use multiple passes starting

with the 1's digit and move

upwards

31 32

33 34

35 36

7

Herman Hollerith

Spring 2024 Sacramento State - Cook - CSc 130 37

 His system was used for the

1890 Census

 And, it only took 9 months!

 Ever since, some form of
tabulating machine has been

used

Herman Hollerith & IBM

Spring 2024 Sacramento State - Cook - CSc 130 38

 The World took notice &
wanted his machines

 Hollerith founded the
Tabulating Machine
Company

 Later it was renamed
International Business
Machines

A dance of buckets

Radix Sort

Radix Sort

Spring 2024 Sacramento State - Cook - CSc 130 41

 The Radix Sort was

developed by Herman

Hollerith in 1887 (77 BBW)

 The sort is completely non-

comparative

 It uses a multiple Bucket Sort

passes to sort data

Radix Sort

Spring 2024 Sacramento State - Cook - CSc 130 42

 Hollerith observed:

• Bucket Sort was stable

• i.e. items did not change

relative positions

 He took advantage of this to

sort data regardless of the
size of the key

37 38

39 40

41 42

8

 Radix Sort uses a Bucket Sort on each digit on the

key

 This is done from the Least Significant Digit (LSD)
to the most (MSD)

 After each pass, the buckets are the emptied into

another set of buckets based on the next digit

How it Works

Spring 2024 Sacramento State - Cook - CSc 130 43

 So, the number of buckets is equal to the number

of possible digits

 Different "digits" can also be used:

• base-10 digits for numbers (10 buckets)

• or a single bit in the key (2 buckets)

• or several binary bits as a group – e.g. every 4 bits for

24 = 16 buckets

How it Works

Spring 2024 Sacramento State - Cook - CSc 130 44

Radix Sort Example

Spring 2024 Sacramento State - Cook - CSc 130 45

0 1 2 3 4 5 6 7 8 9

54 21 75 34 72 19 51 06 1297 45 07

0 1 2 3 4 5 6 7 8 9

First Digit: Scatter into Buckets

54 21 75 34 72 19 51 06 1297 45 07

Spring 2024 Sacramento State - Cook - CSc 130 46

First Digit: Scattered

Spring 2024 Sacramento State - Cook - CSc 130 47

0 1 2 3 4 5 6 7 8 9

5421 75

34

72 19

51

06

12

97

45 07

Small to large

0 1 2 3 4 5 6 7 8 9

First Digit: Gather First Digit

5421 75

34

72 19

51

06

12

97

45 07

Spring 2024 Sacramento State - Cook - CSc 130 48

43 44

45 46

47 48

9

0 1 2 3 4 5 6 7 8 9

First Digit: Sorted

5421 753472 1951 0612 9745 07

Spring 2024 Sacramento State - Cook - CSc 130 49

0 1 2 3 4 5 6 7 8 9

Second Digit: Scatter into Buckets

5421 753472 1951 0612 9745 07

Spring 2024 Sacramento State - Cook - CSc 130 50

0 1 2 3 4 5 6 7 8 9

Second Digit: Scattered

54

21

75

34 72

19

5106 12 9745

07

Spring 2024 Sacramento State - Cook - CSc 130 51

Note: Each bucket is sorted. The first pass sorted the first digit.

0 1 2 3 4 5 6 7 8 9

Second Digit: Gather

54

21

75

34 72

19

5106 12 9745

07

Spring 2024 Sacramento State - Cook - CSc 130 52

Small to large

Second Digit: Completed

Spring 2024 Sacramento State - Cook - CSc 130 53

0 1 2 3 4 5 6 7 8 9

5421 7534 7219 5106 12 974507

Example 3: LSD Base 10

Sorted on first digit

Sorted on first 2 digits

4992 11 74 9042 4750 16 21

499211 7490 42 4750 1621

49 9211 74 9042 47 5016 21

Spring 2024 Sacramento State - Cook - CSc 130 54

49 50

51 52

53 54

10

Example 3: LSD Base 10

279916 530 209 101042 404451

279916530 209101 042 404451

279916 530209101 042404 451

279 916530209101042 404 451

Sorted on first 3 digits

Sorted on first 2 digits

Spring 2024 Sacramento State - Cook - CSc 130 55

 How many passes?

• the algorithm will pass over the array equal to the total

number of digits in the key (k)

• e.g. for, a phone number, k = 10

 So…

• we will exam n array elements a total k number of times

• so, it will be O(k × n)

Time Complexity of Radix Sort

Spring 2024 Sacramento State - Cook - CSc 130 56

 How many buckets?

• we need auxiliary storage for each array element and for

a bucket for each digit

• for a base-10 number, the number of buckets b = 10

 So…

• we will need an extra n array elements and b buckets

• so, it will be O(b + n)

Auxiliary Storage of Radix Sort

Spring 2024 Sacramento State - Cook - CSc 130 57

Radix Sort

O(k × n) where k is the # of key digitsTime Average

O(k × n) actually a slow O(n)Time Best

O(k × n) actually a slow O(n)Time Worst

O(b + n)Auxiliary space

YesStable

NoOnline?

Spring 2024 Sacramento State - Cook - CSc 130 58

Radix Summary

55 56

57 58

