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Trees

Part 8

Introduction to 

Trees

Let the data grow

 In computer science, a tree is 
an abstract model of a 
hierarchical structure

 A tree consists of nodes with 
a parent-child relationship to 
zero or more nodes

Introduction to Trees
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 Organizational charts

 Class hierarchy

 Disk directory and 
subdirectories

 Structure of a program

Some Applications
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Tree Example

Cheese Incorporated

RetailManufacturing

Wheels Slices US International

Europe Asia Africa
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Trees are Recursive
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 Trees are recursive

data structures

 They can be defined 

as smaller instances of 

trees

 So, using recursion is 

a natural approach
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 Linked Lists

• linear - accessing all elements is O(n)

• nodes can only have one predecessor and/or one successor 
node

 Trees

• nonlinear and hierarchical

• nodes can have multiple successors but only one 
predecessor

Linked Lists vs. Trees
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Tree Terminology
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 Node

• just like in linked lists, the 
units of linked data are 
called nodes

• usually contain data 

 Root

• starting point of the tree 

• no nodes link to it

• e.g. A
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Tree Terminology
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 Ancestor node 

• predecessors

• human-like linage names: 
parent, grandparent, etc.

 Descendant node

• successors

• e.g. child, grandchild, 
great-grandchild, etc.
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Tree Terminology
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 Depth of a node

• # of ancestors to the root

• e.g. depth of F is 2

 Height of a tree

• maximum depth of any 

node

• e.g. this tree is 3
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Tree Terminology
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 Branch

• links between nodes

• often unidirectional 

 Branching-factor 

• max number of branches 

any node can have

• can be 2 to more
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Tree Terminology
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 Internal node

• node with at least one 
child

• e.g. A, B, C, G

 Leaf 

• aka external node

• node without children

• e.g. D, E, F, H, I, J
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Tree Terminology
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 Size of the tree

• total number of nodes

• this tree has a size of 

10
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Tree Terminology

Root Branch

Leaf
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class Node 

public Object value;    //Anything

public Node[] branches;

end class

General Tree Node ADT

Array, or better, a linked list
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Tree Traversals

Climbing Down

 A tree traversal visits the 

nodes of a tree in a 

systematic manner

 Given that trees can be 
defined into smaller and 
smaller subtrees, recursion is 

an eloquent solution

Tree Traversal
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Depth First Traversal
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 If we continuously 

follow the tree to the 

left – this will result in 
Euler Tour

 We traverse the tree 
and pass through each 
node
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Depth First Traversal
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 Notice, in this case, 

that we tend to go do 

the bottom first

 This is also known 

depth-first traversal

Depth First Traversal
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 A node is visited when 
its contents are analyzed

 Notice that we pass by 
each node going down 
and going up

 On either of these 
passes, we can visit the 
node

Depth First Traversal
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 This approach lends 

itself to recursion

 How?

• root recurses into its 

children

• each child recurses into 

each of its children

Depth First Traversal
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 This can before or 
after its children are 
visited

 When the node is 
visited, when recursing 
the tree, has a huge
impact on the 
algorithm

Depth-first: Preorder 
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 In a preorder traversal, 

a node is visited before

its descendants

 In the image to the 
right, nodes will be 
visited in the order 

they are numbered
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Depth-first: Preorder 
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 Notice that each child 

was visited after its 

parent

 Some uses… 

• print a tree document

• e.g. XML export
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function preOrder

this.visit()

for each child c in this node

c.preOrder()

end for

end function

Preorder Traversal Logic
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Depth First: Postorder
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 In a postorder

traversal, a node is 

visited after its 
descendants

 Notice that each child 
was visited before its 

parent
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function postOrder

for each child c in this node

c.postOrder()

end for

this.visit()

end function

Depth First: Postorder
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Some Uses for Postorder
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 Compute space used 

child nodes 

 Calculate folder space

 Expression evaluation 
(an alternative to the 

stack algorithm)
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Breadth-first Traversal
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 In a breadth-first
traversal, nodes are 
visited by their level in 
the tree

 So, the traversal, looks 
at all the nodes at 
depth 1, then at 2, 
etc…
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Test Your Might
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What is the order the 
nodes are visited using 
depth-first pre-order

traversal?

A B E C F I J G H D
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Test Your Might
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What is the order the 
nodes are visited using 
depth-first post-order

traversal?

E B I J F G H C D A
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G

D

Test Your Might
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What is the order the 
nodes are visited using 
depth-first breadth-first

traversal?

A B C D E F G H I J
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Binary Trees

The Power of Two!

 The most common tree used 

in data structures is in the 

style of the binary tree

 As the name implies, nodes 

in a binary tree only have two
successors

Binary Trees
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 We call the children of an 

internal node left child and 

right child

Binary Trees
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 Binary Trees are extremely useful in data structures

 The two branches allow for efficient branching and is 
ideal for binary operations

 Applications:

• storing arithmetic expressions

• decision processes

• searching

• sorting

Binary Trees
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class Node 

public Object value; //Can be anything

public Node left;

public Node right;

end class

Binary Tree Node

Branches are 
much simpler
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Boolean Decision Tree
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Commanding?

Selfish?

Yes

Intellectual?

No

Slytherin

Yes

Gryffindorr

No

Ravenclaw

Yes

Hufflepuff

No

Arithmetic Expression Tree
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 Expressions can be 

represented with a tree

 How?

• internal nodes: 

operators

• leaves: operand
(a * (b - 5) + 3 / c)
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Arithmetic Expression Tree

Spring 2024 Sacramento State - Cook - CSc 130 40

 It can be evaluated 

using a depth-first 

traversal

 … notice that the 
node's children need a 
result before the node 

can be evaluated (a * (b - 5) + 3 / c)
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Attributes of a Binary Tree

Spring 2024 Sacramento State - Cook - CSc 130 41

 v = i + 1

 n = 2v - 1

 h ≤ i

 h ≤ (n - 1) / 2

 v ≤ 2h

 h ≥ log2 v

 h ≥ log2 (n + 1) - 1

number of nodesn

number of internal nodesi

number of leavesv

height of the treeh

Depth-First 

Traversing

Binary Trees

With simplicity, we have power!
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 Because of the simplicity of 
binary trees, we have a very 
useful structure for tree 
traversal

 We can only traverse left and 
right

 This gives three possibilities 
for a depth first search

Depth-First Traversing
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Pre-order Depth-first Traversal

 When a pre-order depth-first 

traversal is performed, the 

node is visited before the 
right or left child

 Useful for copying a tree and 
printing trees
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function preOrder

this.visit()

if left isn't null then left.preOrder()

if right isn't null then right.preOrder()  

end function

Binary Pre-order Traversal Logic
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In-order Depth-first Traversal

 In an in-order traversal a 

node is visited after its left 

branch and before its right 
branch

 In other words: recurse left, 
visit, then recurse right
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function inOrder

if left isn't null then left.inOrder()

this.visit()

if right isn't null then right.inOrder()  

end function

Binary In-order Traversal Logic
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Some In-order Applications
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 Draw a binary tree

 Heap sorting

 Binary searching –

O(log n) when sorted
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In-order: Print Expressions
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 In-order can be used to 
easily print an 
expression stored in a 
tree

 Print….

• ( then traverse left

• the node's operator

• traverse right then )
b
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function print()

if this is a leaf

write this.value

else

write "(" 

left.print()

write this.operator …can be stored in this.value

right.print()

write ")"

end if

end function

In-order: Print Expressions
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In-order: Print Expressions

((a * (b - 5)) + (3 / c))
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 In a post-order traversal a 
node is evaluated after its left 
branch and after its right 
branch

 In other words: recurse left, 
recurse right, then visit

Post-order Depth-first Traversal
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function postOrder

if left isn't null then left.postOrder()

if right isn't null then right.postOrder()

this.visit()

end function

Binary Post-order Traversal Logic
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Post-order: Evaluate Expressions

Spring 2024 Sacramento State - Cook - CSc 130 54

 A post-order traversal 

can be used to 

evaluate the tree

 Each recursive call 
(left, right) returns a 
value – the result of its 

calculation
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Post-order: Evaluate Expressions
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 The node then applies 

the operator to the two 

returned values (left, 
right) 

 … and then returns 
that value to its caller

b

a

5

3 c

+

×

-

÷

function evaluate()

if this is a leaf

return this.value

else

x ← left.evaluate()

y ← right.evaluate()

 ← this.operator …can be stored in this.value

return x  y

end if

end function

Post-order: Evaluate Expressions
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