
1

Trees

Part 8

Introduction to

Trees

Let the data grow

 In computer science, a tree is
an abstract model of a
hierarchical structure

 A tree consists of nodes with
a parent-child relationship to
zero or more nodes

Introduction to Trees

Spring 2024 Sacramento State - Cook - CSc 130 3

 Organizational charts

 Class hierarchy

 Disk directory and
subdirectories

 Structure of a program

Some Applications

Spring 2024 Sacramento State - Cook - CSc 130 4

Tree Example

Cheese Incorporated

RetailManufacturing

Wheels Slices US International

Europe Asia Africa

Spring 2024 Sacramento State - Cook - CSc 130 5

Trees are Recursive

Spring 2024 Sacramento State - Cook - CSc 130 6

 Trees are recursive

data structures

 They can be defined

as smaller instances of

trees

 So, using recursion is

a natural approach

A

CB

D E F G

H I J

1 2

3 4

5 6

2

 Linked Lists

• linear - accessing all elements is O(n)

• nodes can only have one predecessor and/or one successor
node

 Trees

• nonlinear and hierarchical

• nodes can have multiple successors but only one
predecessor

Linked Lists vs. Trees

Spring 2024 Sacramento State - Cook - CSc 130 7

Tree Terminology

Spring 2024 Sacramento State - Cook - CSc 130 8

 Node

• just like in linked lists, the
units of linked data are
called nodes

• usually contain data

 Root

• starting point of the tree

• no nodes link to it

• e.g. A

A

CB

D E F G

H I J

Tree Terminology

Spring 2024 Sacramento State - Cook - CSc 130 9

 Ancestor node

• predecessors

• human-like linage names:
parent, grandparent, etc.

 Descendant node

• successors

• e.g. child, grandchild,
great-grandchild, etc.

A

CB

D E F G

H I J

Tree Terminology

Spring 2024 Sacramento State - Cook - CSc 130 10

 Depth of a node

• # of ancestors to the root

• e.g. depth of F is 2

 Height of a tree

• maximum depth of any

node

• e.g. this tree is 3

A

CB

D E F G

H I J

Tree Terminology

Spring 2024 Sacramento State - Cook - CSc 130 11

 Branch

• links between nodes

• often unidirectional

 Branching-factor

• max number of branches

any node can have

• can be 2 to more

A

CB

D E F G

H I J

Tree Terminology

Spring 2024 Sacramento State - Cook - CSc 130 12

 Internal node

• node with at least one
child

• e.g. A, B, C, G

 Leaf

• aka external node

• node without children

• e.g. D, E, F, H, I, J

A

CB

D E F G

H I J

7 8

9 10

11 12

3

Tree Terminology

Spring 2024 Sacramento State - Cook - CSc 130 13

 Size of the tree

• total number of nodes

• this tree has a size of

10

A

CB

D E F G

H I J

Tree Terminology

Root Branch

Leaf

Spring 2024 Sacramento State - Cook - CSc 130 14

B

D E F G

H I J

A

C

class Node

public Object value; //Anything

public Node[] branches;

end class

General Tree Node ADT

Array, or better, a linked list

Spring 2024 Sacramento State - Cook - CSc 130 15

Tree Traversals

Climbing Down

 A tree traversal visits the

nodes of a tree in a

systematic manner

 Given that trees can be
defined into smaller and
smaller subtrees, recursion is

an eloquent solution

Tree Traversal

Spring 2024 Sacramento State - Cook - CSc 130 17

Depth First Traversal

Spring 2024 Sacramento State - Cook - CSc 130 18

 If we continuously

follow the tree to the

left – this will result in
Euler Tour

 We traverse the tree
and pass through each
node

13 14

15 16

17 18

4

Depth First Traversal

Spring 2024 Sacramento State - Cook - CSc 130 19

 Notice, in this case,

that we tend to go do

the bottom first

 This is also known

depth-first traversal

Depth First Traversal

Spring 2024 Sacramento State - Cook - CSc 130 20

 A node is visited when
its contents are analyzed

 Notice that we pass by
each node going down
and going up

 On either of these
passes, we can visit the
node

Depth First Traversal

Spring 2024 Sacramento State - Cook - CSc 130 21

 This approach lends

itself to recursion

 How?

• root recurses into its

children

• each child recurses into

each of its children

Depth First Traversal

Spring 2024 Sacramento State - Cook - CSc 130 22

 This can before or
after its children are
visited

 When the node is
visited, when recursing
the tree, has a huge
impact on the
algorithm

Depth-first: Preorder

Spring 2024 Sacramento State - Cook - CSc 130 23

 In a preorder traversal,

a node is visited before

its descendants

 In the image to the
right, nodes will be
visited in the order

they are numbered

1

62

3 4 7 10

8

9

5

Depth-first: Preorder

Spring 2024 Sacramento State - Cook - CSc 130 24

 Notice that each child

was visited after its

parent

 Some uses…

• print a tree document

• e.g. XML export

1

62

3 4 7 10

8

9

5

19 20

21 22

23 24

5

function preOrder

this.visit()

for each child c in this node

c.preOrder()

end for

end function

Preorder Traversal Logic

Spring 2024 Sacramento State - Cook - CSc 130 25

Depth First: Postorder

Spring 2024 Sacramento State - Cook - CSc 130 26

 In a postorder

traversal, a node is

visited after its
descendants

 Notice that each child
was visited before its

parent

10

93

1 2 6 8

5

7

4

function postOrder

for each child c in this node

c.postOrder()

end for

this.visit()

end function

Depth First: Postorder

Spring 2024 Sacramento State - Cook - CSc 130 27

Some Uses for Postorder

Spring 2024 Sacramento State - Cook - CSc 130 28

 Compute space used

child nodes

 Calculate folder space

 Expression evaluation
(an alternative to the

stack algorithm)

10

93

1 2 6 8

5

7

4

Breadth-first Traversal

Spring 2024 Sacramento State - Cook - CSc 130 29

 In a breadth-first
traversal, nodes are
visited by their level in
the tree

 So, the traversal, looks
at all the nodes at
depth 1, then at 2,
etc…

1

42

5 6 7 9

10

8

3

Test Your Might

Spring 2024 Sacramento State - Cook - CSc 130 30

What is the order the
nodes are visited using
depth-first pre-order

traversal?

A B E C F I J G H D

A

CB

E

J

F H

I

G

D

25 26

27 28

29 30

6

Test Your Might

Spring 2024 Sacramento State - Cook - CSc 130 31

What is the order the
nodes are visited using
depth-first post-order

traversal?

E B I J F G H C D A

A

CB

E

J

F H

I

G

D

Test Your Might

Spring 2024 Sacramento State - Cook - CSc 130 32

What is the order the
nodes are visited using
depth-first breadth-first

traversal?

A B C D E F G H I J

A

CB

E

J

F H

I

G

D

Binary Trees

The Power of Two!

 The most common tree used

in data structures is in the

style of the binary tree

 As the name implies, nodes

in a binary tree only have two
successors

Binary Trees

Spring 2024 Sacramento State - Cook - CSc 130 34

 We call the children of an

internal node left child and

right child

Binary Trees

Spring 2024 Sacramento State - Cook - CSc 130 35

 Binary Trees are extremely useful in data structures

 The two branches allow for efficient branching and is
ideal for binary operations

 Applications:

• storing arithmetic expressions

• decision processes

• searching

• sorting

Binary Trees

Spring 2024 Sacramento State - Cook - CSc 130 36

31 32

33 34

35 36

7

class Node

public Object value; //Can be anything

public Node left;

public Node right;

end class

Binary Tree Node

Branches are
much simpler

Spring 2024 Sacramento State - Cook - CSc 130 37

Boolean Decision Tree

Spring 2024 Sacramento State - Cook - CSc 130 38

Commanding?

Selfish?

Yes

Intellectual?

No

Slytherin

Yes

Gryffindorr

No

Ravenclaw

Yes

Hufflepuff

No

Arithmetic Expression Tree

Spring 2024 Sacramento State - Cook - CSc 130 39

 Expressions can be

represented with a tree

 How?

• internal nodes:

operators

• leaves: operand
(a * (b - 5) + 3 / c)

b

a

5

3 c

+

×

-

÷

Arithmetic Expression Tree

Spring 2024 Sacramento State - Cook - CSc 130 40

 It can be evaluated

using a depth-first

traversal

 … notice that the
node's children need a
result before the node

can be evaluated (a * (b - 5) + 3 / c)

b

a

5

3 c

+

×

-

÷

Attributes of a Binary Tree

Spring 2024 Sacramento State - Cook - CSc 130 41

 v = i + 1

 n = 2v - 1

 h ≤ i

 h ≤ (n - 1) / 2

 v ≤ 2h

 h ≥ log2 v

 h ≥ log2 (n + 1) - 1

number of nodesn

number of internal nodesi

number of leavesv

height of the treeh

Depth-First

Traversing

Binary Trees

With simplicity, we have power!

37 38

39 40

41 42

8

 Because of the simplicity of
binary trees, we have a very
useful structure for tree
traversal

 We can only traverse left and
right

 This gives three possibilities
for a depth first search

Depth-First Traversing

Spring 2024 Sacramento State - Cook - CSc 130 43

Pre-order Depth-first Traversal

 When a pre-order depth-first

traversal is performed, the

node is visited before the
right or left child

 Useful for copying a tree and
printing trees

Spring 2024 Sacramento State - Cook - CSc 130 44

function preOrder

this.visit()

if left isn't null then left.preOrder()

if right isn't null then right.preOrder()

end function

Binary Pre-order Traversal Logic

Spring 2024 Sacramento State - Cook - CSc 130 45

In-order Depth-first Traversal

 In an in-order traversal a

node is visited after its left

branch and before its right
branch

 In other words: recurse left,
visit, then recurse right

Spring 2024 Sacramento State - Cook - CSc 130 46

function inOrder

if left isn't null then left.inOrder()

this.visit()

if right isn't null then right.inOrder()

end function

Binary In-order Traversal Logic

Spring 2024 Sacramento State - Cook - CSc 130 47

Some In-order Applications

Spring 2024 Sacramento State - Cook - CSc 130 48

 Draw a binary tree

 Heap sorting

 Binary searching –

O(log n) when sorted

4

82

1 3 6 9

5 7

43 44

45 46

47 48

9

In-order: Print Expressions

Spring 2024 Sacramento State - Cook - CSc 130 49

 In-order can be used to
easily print an
expression stored in a
tree

 Print….

• (then traverse left

• the node's operator

• traverse right then)
b

a

5

3 c

+

×

-

÷

function print()

if this is a leaf

write this.value

else

write "("

left.print()

write this.operator …can be stored in this.value

right.print()

write ")"

end if

end function

In-order: Print Expressions

Spring 2024 Sacramento State - Cook - CSc 130 50

In-order: Print Expressions

((a * (b - 5)) + (3 / c))

Spring 2024 Sacramento State - Cook - CSc 130 51

b

a

5

3 c

+

×

-

÷

 In a post-order traversal a
node is evaluated after its left
branch and after its right
branch

 In other words: recurse left,
recurse right, then visit

Post-order Depth-first Traversal

Spring 2024 Sacramento State - Cook - CSc 130 52

function postOrder

if left isn't null then left.postOrder()

if right isn't null then right.postOrder()

this.visit()

end function

Binary Post-order Traversal Logic

Spring 2024 Sacramento State - Cook - CSc 130 53

Post-order: Evaluate Expressions

Spring 2024 Sacramento State - Cook - CSc 130 54

 A post-order traversal

can be used to

evaluate the tree

 Each recursive call
(left, right) returns a
value – the result of its

calculation
b

a

5

3 c

+

×

-

÷

49 50

51 52

53 54

10

Post-order: Evaluate Expressions

Spring 2024 Sacramento State - Cook - CSc 130 55

 The node then applies

the operator to the two

returned values (left,
right)

 … and then returns
that value to its caller

b

a

5

3 c

+

×

-

÷

function evaluate()

if this is a leaf

return this.value

else

x ← left.evaluate()

y ← right.evaluate()

 ← this.operator …can be stored in this.value

return x y

end if

end function

Post-order: Evaluate Expressions

Spring 2024 Sacramento State - Cook - CSc 130 56

55 56

