
1

Trees

Part 8

Introduction to

Trees

Let the data grow

 In computer science, a tree is
an abstract model of a
hierarchical structure

 A tree consists of nodes with
a parent-child relationship to
zero or more nodes

Introduction to Trees

Spring 2024 Sacramento State - Cook - CSc 130 3

 Organizational charts

 Class hierarchy

 Disk directory and
subdirectories

 Structure of a program

Some Applications

Spring 2024 Sacramento State - Cook - CSc 130 4

Tree Example

Cheese Incorporated

RetailManufacturing

Wheels Slices US International

Europe Asia Africa

Spring 2024 Sacramento State - Cook - CSc 130 5

Trees are Recursive

Spring 2024 Sacramento State - Cook - CSc 130 6

 Trees are recursive

data structures

 They can be defined

as smaller instances of

trees

 So, using recursion is

a natural approach

A

CB

D E F G

H I J

1 2

3 4

5 6

2

 Linked Lists

• linear - accessing all elements is O(n)

• nodes can only have one predecessor and/or one successor
node

 Trees

• nonlinear and hierarchical

• nodes can have multiple successors but only one
predecessor

Linked Lists vs. Trees

Spring 2024 Sacramento State - Cook - CSc 130 7

Tree Terminology

Spring 2024 Sacramento State - Cook - CSc 130 8

 Node

• just like in linked lists, the
units of linked data are
called nodes

• usually contain data

 Root

• starting point of the tree

• no nodes link to it

• e.g. A

A

CB

D E F G

H I J

Tree Terminology

Spring 2024 Sacramento State - Cook - CSc 130 9

 Ancestor node

• predecessors

• human-like linage names:
parent, grandparent, etc.

 Descendant node

• successors

• e.g. child, grandchild,
great-grandchild, etc.

A

CB

D E F G

H I J

Tree Terminology

Spring 2024 Sacramento State - Cook - CSc 130 10

 Depth of a node

• # of ancestors to the root

• e.g. depth of F is 2

 Height of a tree

• maximum depth of any

node

• e.g. this tree is 3

A

CB

D E F G

H I J

Tree Terminology

Spring 2024 Sacramento State - Cook - CSc 130 11

 Branch

• links between nodes

• often unidirectional

 Branching-factor

• max number of branches

any node can have

• can be 2 to more

A

CB

D E F G

H I J

Tree Terminology

Spring 2024 Sacramento State - Cook - CSc 130 12

 Internal node

• node with at least one
child

• e.g. A, B, C, G

 Leaf

• aka external node

• node without children

• e.g. D, E, F, H, I, J

A

CB

D E F G

H I J

7 8

9 10

11 12

3

Tree Terminology

Spring 2024 Sacramento State - Cook - CSc 130 13

 Size of the tree

• total number of nodes

• this tree has a size of

10

A

CB

D E F G

H I J

Tree Terminology

Root Branch

Leaf

Spring 2024 Sacramento State - Cook - CSc 130 14

B

D E F G

H I J

A

C

class Node

public Object value; //Anything

public Node[] branches;

end class

General Tree Node ADT

Array, or better, a linked list

Spring 2024 Sacramento State - Cook - CSc 130 15

Tree Traversals

Climbing Down

 A tree traversal visits the

nodes of a tree in a

systematic manner

 Given that trees can be
defined into smaller and
smaller subtrees, recursion is

an eloquent solution

Tree Traversal

Spring 2024 Sacramento State - Cook - CSc 130 17

Depth First Traversal

Spring 2024 Sacramento State - Cook - CSc 130 18

 If we continuously

follow the tree to the

left – this will result in
Euler Tour

 We traverse the tree
and pass through each
node

13 14

15 16

17 18

4

Depth First Traversal

Spring 2024 Sacramento State - Cook - CSc 130 19

 Notice, in this case,

that we tend to go do

the bottom first

 This is also known

depth-first traversal

Depth First Traversal

Spring 2024 Sacramento State - Cook - CSc 130 20

 A node is visited when
its contents are analyzed

 Notice that we pass by
each node going down
and going up

 On either of these
passes, we can visit the
node

Depth First Traversal

Spring 2024 Sacramento State - Cook - CSc 130 21

 This approach lends

itself to recursion

 How?

• root recurses into its

children

• each child recurses into

each of its children

Depth First Traversal

Spring 2024 Sacramento State - Cook - CSc 130 22

 This can before or
after its children are
visited

 When the node is
visited, when recursing
the tree, has a huge
impact on the
algorithm

Depth-first: Preorder

Spring 2024 Sacramento State - Cook - CSc 130 23

 In a preorder traversal,

a node is visited before

its descendants

 In the image to the
right, nodes will be
visited in the order

they are numbered

1

62

3 4 7 10

8

9

5

Depth-first: Preorder

Spring 2024 Sacramento State - Cook - CSc 130 24

 Notice that each child

was visited after its

parent

 Some uses…

• print a tree document

• e.g. XML export

1

62

3 4 7 10

8

9

5

19 20

21 22

23 24

5

function preOrder

this.visit()

for each child c in this node

c.preOrder()

end for

end function

Preorder Traversal Logic

Spring 2024 Sacramento State - Cook - CSc 130 25

Depth First: Postorder

Spring 2024 Sacramento State - Cook - CSc 130 26

 In a postorder

traversal, a node is

visited after its
descendants

 Notice that each child
was visited before its

parent

10

93

1 2 6 8

5

7

4

function postOrder

for each child c in this node

c.postOrder()

end for

this.visit()

end function

Depth First: Postorder

Spring 2024 Sacramento State - Cook - CSc 130 27

Some Uses for Postorder

Spring 2024 Sacramento State - Cook - CSc 130 28

 Compute space used

child nodes

 Calculate folder space

 Expression evaluation
(an alternative to the

stack algorithm)

10

93

1 2 6 8

5

7

4

Breadth-first Traversal

Spring 2024 Sacramento State - Cook - CSc 130 29

 In a breadth-first
traversal, nodes are
visited by their level in
the tree

 So, the traversal, looks
at all the nodes at
depth 1, then at 2,
etc…

1

42

5 6 7 9

10

8

3

Test Your Might

Spring 2024 Sacramento State - Cook - CSc 130 30

What is the order the
nodes are visited using
depth-first pre-order

traversal?

A B E C F I J G H D

A

CB

E

J

F H

I

G

D

25 26

27 28

29 30

6

Test Your Might

Spring 2024 Sacramento State - Cook - CSc 130 31

What is the order the
nodes are visited using
depth-first post-order

traversal?

E B I J F G H C D A

A

CB

E

J

F H

I

G

D

Test Your Might

Spring 2024 Sacramento State - Cook - CSc 130 32

What is the order the
nodes are visited using
depth-first breadth-first

traversal?

A B C D E F G H I J

A

CB

E

J

F H

I

G

D

Binary Trees

The Power of Two!

 The most common tree used

in data structures is in the

style of the binary tree

 As the name implies, nodes

in a binary tree only have two
successors

Binary Trees

Spring 2024 Sacramento State - Cook - CSc 130 34

 We call the children of an

internal node left child and

right child

Binary Trees

Spring 2024 Sacramento State - Cook - CSc 130 35

 Binary Trees are extremely useful in data structures

 The two branches allow for efficient branching and is
ideal for binary operations

 Applications:

• storing arithmetic expressions

• decision processes

• searching

• sorting

Binary Trees

Spring 2024 Sacramento State - Cook - CSc 130 36

31 32

33 34

35 36

7

class Node

public Object value; //Can be anything

public Node left;

public Node right;

end class

Binary Tree Node

Branches are
much simpler

Spring 2024 Sacramento State - Cook - CSc 130 37

Boolean Decision Tree

Spring 2024 Sacramento State - Cook - CSc 130 38

Commanding?

Selfish?

Yes

Intellectual?

No

Slytherin

Yes

Gryffindorr

No

Ravenclaw

Yes

Hufflepuff

No

Arithmetic Expression Tree

Spring 2024 Sacramento State - Cook - CSc 130 39

 Expressions can be

represented with a tree

 How?

• internal nodes:

operators

• leaves: operand
(a * (b - 5) + 3 / c)

b

a

5

3 c

+

×

-

÷

Arithmetic Expression Tree

Spring 2024 Sacramento State - Cook - CSc 130 40

 It can be evaluated

using a depth-first

traversal

 … notice that the
node's children need a
result before the node

can be evaluated (a * (b - 5) + 3 / c)

b

a

5

3 c

+

×

-

÷

Attributes of a Binary Tree

Spring 2024 Sacramento State - Cook - CSc 130 41

 v = i + 1

 n = 2v - 1

 h ≤ i

 h ≤ (n - 1) / 2

 v ≤ 2h

 h ≥ log2 v

 h ≥ log2 (n + 1) - 1

number of nodesn

number of internal nodesi

number of leavesv

height of the treeh

Depth-First

Traversing

Binary Trees

With simplicity, we have power!

37 38

39 40

41 42

8

 Because of the simplicity of
binary trees, we have a very
useful structure for tree
traversal

 We can only traverse left and
right

 This gives three possibilities
for a depth first search

Depth-First Traversing

Spring 2024 Sacramento State - Cook - CSc 130 43

Pre-order Depth-first Traversal

 When a pre-order depth-first

traversal is performed, the

node is visited before the
right or left child

 Useful for copying a tree and
printing trees

Spring 2024 Sacramento State - Cook - CSc 130 44

function preOrder

this.visit()

if left isn't null then left.preOrder()

if right isn't null then right.preOrder()

end function

Binary Pre-order Traversal Logic

Spring 2024 Sacramento State - Cook - CSc 130 45

In-order Depth-first Traversal

 In an in-order traversal a

node is visited after its left

branch and before its right
branch

 In other words: recurse left,
visit, then recurse right

Spring 2024 Sacramento State - Cook - CSc 130 46

function inOrder

if left isn't null then left.inOrder()

this.visit()

if right isn't null then right.inOrder()

end function

Binary In-order Traversal Logic

Spring 2024 Sacramento State - Cook - CSc 130 47

Some In-order Applications

Spring 2024 Sacramento State - Cook - CSc 130 48

 Draw a binary tree

 Heap sorting

 Binary searching –

O(log n) when sorted

4

82

1 3 6 9

5 7

43 44

45 46

47 48

9

In-order: Print Expressions

Spring 2024 Sacramento State - Cook - CSc 130 49

 In-order can be used to
easily print an
expression stored in a
tree

 Print….

• (then traverse left

• the node's operator

• traverse right then)
b

a

5

3 c

+

×

-

÷

function print()

if this is a leaf

write this.value

else

write "("

left.print()

write this.operator …can be stored in this.value

right.print()

write ")"

end if

end function

In-order: Print Expressions

Spring 2024 Sacramento State - Cook - CSc 130 50

In-order: Print Expressions

((a * (b - 5)) + (3 / c))

Spring 2024 Sacramento State - Cook - CSc 130 51

b

a

5

3 c

+

×

-

÷

 In a post-order traversal a
node is evaluated after its left
branch and after its right
branch

 In other words: recurse left,
recurse right, then visit

Post-order Depth-first Traversal

Spring 2024 Sacramento State - Cook - CSc 130 52

function postOrder

if left isn't null then left.postOrder()

if right isn't null then right.postOrder()

this.visit()

end function

Binary Post-order Traversal Logic

Spring 2024 Sacramento State - Cook - CSc 130 53

Post-order: Evaluate Expressions

Spring 2024 Sacramento State - Cook - CSc 130 54

 A post-order traversal

can be used to

evaluate the tree

 Each recursive call
(left, right) returns a
value – the result of its

calculation
b

a

5

3 c

+

×

-

÷

49 50

51 52

53 54

10

Post-order: Evaluate Expressions

Spring 2024 Sacramento State - Cook - CSc 130 55

 The node then applies

the operator to the two

returned values (left,
right)

 … and then returns
that value to its caller

b

a

5

3 c

+

×

-

÷

function evaluate()

if this is a leaf

return this.value

else

x ← left.evaluate()

y ← right.evaluate()

 ← this.operator …can be stored in this.value

return x  y

end if

end function

Post-order: Evaluate Expressions

Spring 2024 Sacramento State - Cook - CSc 130 56

55 56

