/l\ Introduction to
‘ GCES

Part 8 Let the data grow

Introduction to Trees Some Applications

= In computer science, a tree is = Organizational charts
an abstract model of a
hierarchical structure

= (Class hierarchy

= Disk directory and

= A tree consists of nodes with subdirectories

a parent-child relationship to
zero or more nodes = Structure of a program

Tree Example Trees are Recursive

Cheese Incorporated

{ Manufacturing } { Retail }

= Trees are recursive 0
data structures

= They can be defined
as smaller instances of

2 e e
Wheels Slices)) trees ° G G e
= So, using recursion is

{ Europe J { Asia J{ Africa J a natural appl’oaCh ° 0 0

sprng 2024 Sacramano St ook - 052 120 s Sorg 2024 Sacraments St - ook - G5 120

Linked Lists vs. Trees

= Linked Lists
« linear - accessing all elements is O(n)

+ nodes can only have one predecessor and/or one successor
node

= Trees
+ nonlinear and hierarchical

+ nodes can have multiple successors but only one
predecessor

Tree Terminology

= Node

« just like in linked lists, the
units of linked data are
called nodes

 usually contain data

= Root
« starting point of the tree
* no nodes link to it
ceg. A

Tree Terminology

= Ancestor node
+ predecessors

* human-like linage names:
parent, grandparent, etc.

= Descendant node
* successors

+ e.g. child, grandchild,
great-grandchild, etc.

Tree Terminology

= Depth of a node
« # of ancestors to the root
« e.g.depth of Fis 2

= Height of a tree

* maximum depth of any
node

+ e.g.thistreeis 3

Tree Terminology

= Branch
* links between nodes

« often unidirectional

= Branching-factor

+ max number of branches
any node can have

+ can be 2 to more

Tree Terminology

= Internal node

* node with at least one
child

« eg.ABC,G
= Leaf
» aka external node
» node without children
« eg.DEFHIJ

S - ook - G5 120

11

Tree Terminology

= Sjze of the tree
« total number of nodes

« this tree has a size of
10

Tree Terminology

13

General Tree Node ADT

class Node
public Object value; //Anything

public Node[] branches;

end class
Array, or better, a linked list

Sorg 2028 Sacramano St ook - 052 120

14

Y N

Tree Traversals
Y N

Climbing Down

15

HCERICVEEE]

16

Depth First Traversal

= A free traversal visits the
nodes of a tree in a
systematic manner

= Given that trees can be
defined into smaller and
smaller subtrees, recursion is
an eloquent solution

= |f we continuously '/,a, !
follow the tree to the i /

left — this will result in i(bJt o
Euler Tour N /

= We traverse the tree -‘-\ F =
and pass through each ' L)
nodep g .@)e (éf GO

17

18

Depth First Traversal Depth First Traversal

'GK = A node is visited when 'fé)f\
= Notice, in this case, 4 //¥ e 'ts contents are analyzed - /ﬁ S
that we tend to go do (ot O} = Notice that we pass by (b} 'O}
the bottom first - / each node going down i
This is also k @ O A and going up @ WO A
= This is also known = 7 = . . = i =
depth-first traversal Olid] 1 et o o s the oy s
YA SN node AN
19 20

Depth First Traversal Depth First Traversal
A . ~
= This approach lends a) = This can before or i(a)
itself tg ?ecursion /ﬁ K after its children are /ﬁ
o 101 kG visited 101 1G)
' o A / 7 = When the node is i /
+ root recurses into its ,.@ IO 'Cf/,‘ visited, when recursing ,(d‘/. (et ,(-f‘ '
children "\ o\ the tree, has a huge A /A
« each child recurses into e *f’b“ GWICD impact on the e (th WD
each of its children @” = N algorithm C‘Z/' 4L U
21 22

Depth-first: Preorder Depth-first: Preorder

= In a preorder traversal,
a node is visited before
its descendants

= Notice that each child
was visited after its
parent

= In the image to the
right, nodes will be
visited in the order
they are numbered

= Some uses...
 print a tree document
» e.g. XML export

23 24

Preorder Traversal Logic

function preOrder

this.visit ()

for each child c in this node
c.preOrder ()
end for

end function

Depth First: Postorder

= In a postorder
traversal, a node is
visited after its
descendants

= Notice that each child
was visited before its
parent

25

Depth First: Postorder

function postOrder
for each child c in this node
c.postOrder ()

end for

this.visit ()

end function

Sorg 2028 Sacramano St ook - 052 120

26

Some Uses for Postorder

= Compute space used
child nodes

= Calculate folder space

= Expression evaluation
(an alternative to the
stack algorithm)

27

Breadth-first Traversal

= |In a breadth-first
traversal, nodes are
visited by their level in
the tree

= So, the traversal, looks
at all the nodes at
depth 1, then at 2,
etc...

28

Test Your Might

What is the order the
nodes are visited using
depth-first pre-order
traversal?

ABECFIJGHD

29

30

Test Your Might Test Your Might

What is the order the
nodes are visited using
depth-first post-order
traversal?

EBIJFGHCDA

What is the order the
nodes are visited using
depth-first breadth-first
traversal?

ABCDEFGHIJ

31

Binary Trees

The Power of Two!

32

= The most common tree used
in data structures is in the
style of the binary tree

= As the name implies, nodes
in a binary tree only have two
SuCcessors

33

34

= We call the children of an
internal node /eft child and
right child

Binary Trees are extremely useful in data structures

= The two branches allow for efficient branching and is

ideal for binary operations

] Appllcanons

» storing arithmetic expressions
» decision processes
 searching

sorting

35

36

Binary Tree Node

class Node

end class

public Object value;
public Node left;
public Node right;

//Can be anything

Branches are
much simpler

Boolean Decision Tree

Commanding?

Selfish? Intellectual?

Ravenclaw Hufflepuff

37

Arithmetic Expression Tree

Expressions can be
represented with a tree
How?

« internal nodes:
operators

* leaves: operand
(a* (-5 +3/c)

38

Arithmetic Expression Tree

= |t can be evaluated
using a depth-first
traversal

= ... notice that the

node's children need a
result before the node

can be evaluated (@a* (b-5) +3/ c)

39

Attributes of a Binary Tree

sprng 2024

v=i+1
n=2v-1

number of nodes
h<i

number of internal nodes
h<(n-1)/2
v<2h number of leaves
h=log, v height of the tree
hzlog,(n+1)-1

40

Depth-First
Traversing
Binary Trees

Y N

l.\

With simplicity, we have power!

41

42

Depth-First Traversing

= Because of the simplicity of
binary trees, we have a very
useful structure for tree
traversal

= We can only traverse left and
right

= This gives three possibilities

for a depth first search

Pre-order Depth-first Traversal

= When a pre-order depth-first
traversal is performed, the
node is visited before the
right or left child

= Useful for copying a tree and
printing trees

43

Binary Pre-order Traversal Logic

44

In-order Depth-first Traversal

function preOrder

this.visit ()

if left isn't null then left.preOrder()
if right isn't null then right.preOrder ()

end function

= |n an in-order traversal a
node is visited after its left
branch and before its right
branch

= |n other words: recurse left,
visit, then recurse right

45

Binary In-order Traversal Logic

function inOrder

if left disn't null then left.inOrder ()

this.visit ()

if right isn't null then right.inOrder ()

end function

46

Some In-order Applications

= Draw a binary tree
= Heap sorting

= Binary searching —
O(log n) when sorted

47

48

In-order: Print Expressions In-order: Print Expressions

= In-order can be used to H
. . function print ()
eaS”y prlnt an . if this is a leaf
expression stored in a write this.value
tree else (
write " ("
= Print.... left.prim:()
write this.operator ..can be stored in this.value
» (then traverse left right .print ()
write ")"
+ the node's operator end if
- traverse right then) end function i

49 50

In-order: Print Expressions Post-order Depth-first Traversal

= |In a post-order traversal a
node is evaluated after its left
branch and after its right

» [(@ ®-)+c/o branch

= |n other words: recurse left,
recurse right, then visit

51 52

Binary Post-order Traversal Logic Post-order: Evaluate Expressions

= A post-order traversal
function postOrder can be used to
if left isn't null then left.postOrder () evaluate the tree

if right isn't null then right.postOrder() Each i I
- acn recursive ca

this.visit () (left, right) returns a _
end function value —.the result of its
L calculation
53 54

Post-order: Evaluate Expressions

Post-order: Evaluate Expressions

= The node then applies
the operator to the two
returned values (left,
right)

= .. and then returns
that value to its caller

function evaluate()
if this is a leaf
return this.value
else
X « left.evaluate()

Vv « right.evaluate()

0 « this.operator
return x {0 y
end if
end function

..can be stored in this.value

55

56

10

