Heaps & Priority

Queues
AN

Part 9 Piles of data!

What is a heap? Terminology Warning

= The heap data structure is not
the same as the operating
system's heap

= A heapis a binary tree, but a
notable format to the nodes

= The value of a node is
smaller (or larger) than both
of its children = The heap data structure is a

tree that stores "heavier"

objects at the bottom

= They are often confused...

= Every subtree is a heap

Sacramano St ook - 052 120 s Sorg 2024 Sacrament St - ook - G5 120

Min and max-heaps Min and max-heaps

= Min-heap

+ each of a node's descendants have a "heavier" value

+ stores smaller items (minimal items) at the top of the tree
= Max-heap

+ each node's parent has a "heavier" value

« stores larger items (maximum items) at the top of the tree

min-heap max-heap

o510 s Sorm 2024

Heaps

= Heaps are complete
binary trees

= Nodes are added in
breadth-first order

= The resulting tree is
always optimal and
balanced

Height of a Heap

= Leti be the depth of a node

= Then, there are 2/ nodes of
depth i

= Heap always has a height of
log,(n)

Height of a Heap

Adding a Node

1. Begin at next available position for a leaf

2. Now the item needs to be up-heaped

* move the entry up depending on its value until a correct
position is found

« as this is done, nodes are swapped - parent to child
change position

 since a heap always has height log,(n), upheap runs in
O(log n) time

10

11

Min-heap: Adding a Node 13

Min-heap: Adding a Node 13

13

Total Up-heap-val

= Just to make matters confusing,
up-heap is also known by various
other terms — which are all valid
= These are some:
* bubble-up
« percolate-up
« sift-up
* heapify-up
« cascade-up

Sorg 2028 Sacramano St ook - 052 120

14

Deleting a Node

= Deleting a node is quite different from adding

= Heaps must maintain completeness

* s0, the right-most leaf is needed to replace the deleted
node

+ why? We replace the deleted node with the last one
added.

15

Deleting a Node

16

Downheap Algorithm

= The steps to delete:
1. remove the node
2. replace it with the right-most leaf

3. now, it needs to down-heaped (moved down) to the
correct location

= This runs in O(log n) time

Sorg 2028 Sacramano St ook - 052 120

= With a heap, every node has two children
» as you downheap, you swap nodes
* s0, which one do you select?

= Preserve the heap structure — vital
* on a min-heap, swap with the smallest child
* on a max-heap, swap with the largest child

Sorg 2024 Sacraments St - ook - G5 120

17

18

Min-heap: Deleting 25

Replace. Now must down-heap.

Replace. Now must down-heap.

Replace. Now must down-heap.

Replace. Now must down-heap.

As You Expected...

Just like up-heap, down-hea
several other, completely va
names
These are some:

* bubble-down

« percolate-down

« sift-down

* heapify-down

« cascade-down

Sacraments St - ook - G5 120

Fdhas
1d,

23

24

Priority Queues

= A stack is first-in-last-out

l Priority Queues = A queue is first-in-first-out .

= A priority queue is
modification of the queue
ADT that follows the logic of { pRIORITY

first-in-least-out

Queues can play favorites

25 26

First-in-Least-Out What is the "Least" Item?

= The "least" element is the first = Meaning of "least" is defined by the ADT
one that is removed = |tis abstract - does not mean "less than"

= |f two items have the same ’ + 50, "least" can be any way of ranking items
"rank”, items can be queued ’/ « ..ifthe items are mathematically transitive

as normal » "least" can be the largest value
= The object's key can be used PR[OR‘TY = Examples of least:
to determine if it is "least", but + the smallest / largest value
any field will do + some ranking classification
27 28

Priority Queue Interface Implementation

= Before we select a data
Priorityguene Create an emply PQ structure to implement a
void add(Ttem item) Same as enqueue() priority queue, we should look ’
ren cemvetonst same st how data will be used ’/
Ttem getlLeast() Same as peek(), first() = The goal is to get the best R‘TY
T —— time efficiency with as little PRIO
it sizel) overhead as possible

29 30

Implementation

= The type data to be stored
will influence how the priority

queue is implemented ’
= We have quite a few options: ’/

e array PR‘ OR‘TY

* linked-list
 tree / heap

Implementation with an Array

= Unsorted array

« enqueue requires O(n) — resize array

» dequeue requires O(n) — search and moving
= Sorted array

» enqueue requires O(n) — find a position to insert and
then move the rest

» dequeue requires O(n)

31

Implementation with a Linked List

= Unsorted linked list
» enqueue takes O(1)
+ dequeue requires O(n) — find & remove node
= Sorted linked list
* enqueue requires O(n) — must find a position and insert
» dequeue requires O(1) — just remove the head/tail

Sprng 2024 Sacramano St ook - 052 120

32

We Need Another Data Structure!

= Arrays have a time complexity of O(n) for Enqueue
and Dequeue

= Linked Lists did have a single O(1) operation, but
the other was O(n)

= Given priority queues are updated often (just like
normal queues), arrays and linked lists are poor
solutions

33

Hybrid Implementations

= |n some cases, the key value can have a minor
range of values — possibly just a few
= Examples:
+ hospital triage — immediate, delayed, minor
» computer processes — OS, application, GUI

= We can make clever hybrid structures that
maximize efficiency

34

Hybrid Implementations

= |f the key contains a small number of values, you
can use multiple queues — one for each key value

= Basically, the priority queue, internally, will have an
array of queues
= Adding/removing items will always be O(1)
* O(1) for the queue head
» O(1) for enqueue/dequeue (using linked list)

35

36

Medical Triage — Array of Queues

. But Heaps are Universal

Immediate = However, in most cases, the key values have large
triage ranl
2 ranges

= For example, if the key is a 32-bit integer, do you
«— Enqueue want to create 4 million queues?

= Didn't think so....

= So, this only works in limited situations

37 38

Implementation with a Heap Implementation with a Heap
= However, a priority queue can be implemented as * Toenqueue an item...
a heap * justadd to it the heap
« it will up-heap to the correct
= Remember... posmoﬁ P
+ in a heap, all the items below a node have a greater * requires O(log n) /
value = To dequeue an item... PR[OR‘TY
* S0, the root is the least item! « just remove the root
* heaps naturally implement a priority queue - requires O(log n) rebalance

39 40

Medical Triage - Heap

Bl e
yS
158l

Not a Heap O' Trouble

41 42

Heaps and Arrays

= Heaps are complete,
balanced, binary trees

= This rigid, predictable,
structure...

« lends itself to being stored in
an array

+ each node has a pre-ordained
location

Heaps and Arrays

= Using an array, links between
items are not explicitly stored

= Finding the location of an
array item can found using
simple mathematics

= Heaps are no different - due
to their predictable structure

Spug 220 ‘Saramento S -Cok -CSe 120

43

Heaps and Arrays

= Any node's parent and children can be computed
mathematically
= Heap ADTs only need to...
« track the index of the end of the heap
 all new items are added here — before upheap

+ and this is where the last item will be swapped for a
deleted item (before it is downheaped)

Sprng 2024 Sacramano St ook - 052 120

44

Heap Array Math

Find 0 Indexed Array 1 Indexed Array
Parent of node i (1 -1) /2 i/ 2
Left child of node i (2 * i) + 1 2 * i
Right child of node i (2 * i) + 2 (2 * i) +1

45

Heap in an Array

46

Heap in an Array

0 Array

sprng 2024 Sacramano St ook - 052 120

Array

47

Heap Sort

L =

Heap-a-rific algorithm!

improved by Robert Floyd

Heap Sort is an ingenious
algorithm that uses a max-
heap to sort an array

John W. J. Williams invented
both heaps and the Heap
Sort in 1964 (0 ABW)

The same year, the sort was

1

49

50

Heap Sort Heap Sort Works in Two Phases

bR

= Heap Sort takes advantage of
the fact that a heap is a
natural priority queue

= ... and that a heap will always
add / remove from the right-
most leaf

Phase 1: Heapify

« converts the existing array into
a max-heap

Phase 2: Empty the heap

» removes all the nodes (treating
it as priority queue)

« sorted data is added to the end
of the array

1

51

Implementation Phase 1: Array > Heap

In Phase 1, we convert the array into a max-heap. This

= Both the "heap" and the remaining array can be
used in memory at the same time

= The sorted array is stored at the empty space after
the end of the heap

= This concept works for both Phase 1 and Phase 2

52

step is called heapify.

Remember....

» aheap can be stored in an array

* s0, we can just look at the array as a heap

« ...but, its not quite a heap yet

» data needs to be rearranged to turn the array into a heap

Sacraments St - ook - G5 120

53

54

How do we convert it?

= First approach: fop-down
« start building the heap at the top of the array
« iterate / starting at 0 and build a heap above i
* item are upheaped

= Second approach: bottom-up
- fastest approach is to downheap all the leaves
* run the downheap, at the root, all the leaves

Phase 1: Heapify (top down)

procedure heapify(array, count)
last = count - 1

n =20 //First item

while (n <= last)
upHeap (array, 0, n - 1)
n++

end while

end procedure

55

Phase 1: Heapify (top down)

56

Phase 2: Root Deletion

procedure heapify(array, count)
last = count - 1
n = last //last item

while (n >= 0)
downHeap (array, n + 1, last)
n—

end while

end procedure

= Now that the array is a
max-heap, the root
contains the maximum
item

= |f we remove the root,
we have the /ast item
of the sorted array!

Sorg 2028 Sacramano St ook - 052 120

57

Phase 2: Root Deletion

= When we remove the
root... right-most leaf is
moved to the root

= ...and then
downheaped into the
correct position

58

Phase 2: Root Deletion

= Now the root contains
the second-largest
item in the array

= This leaf position is
now empty

59

60

10

Phase 2: Root Deletion Phase 2: Root Deletion

= 8o, to sort the array....

= We can put the root, that was . .
» s0, we just keep removing the

just removed, in this new root and placing it position
empty space where the leaf was located
= What a sec! We just put the . thel"heap" section of the array
. . shrinks as the sorted array
largest item in the |ast grows from the bottom

osition in the array!
P Y = OMG! Sooooo, awesome!

61 62

Heap Sort Algorithm Phase 1 — Top-down Upheap
last = count - 1 i . Heap 0 Conceptual View
heapify (array, 0, last) W o 1 m 42
while (last > 0) 2 a
swap array[0] and array[last] 3 18 56
downHeap (0, last - 1) 4
last——
end while 5 7 30 74
63 64

Phase 1 — Top-down Upheap Phase 1 — Top-down Upheap

. Heap 0

« Conceptual View B seer 0
. Array

. Array

Conceptual View

N
@ - S
N

®
@
>
w
@ &
®
@
>

65 66

11

Phase 1 — Top-down Upheap

B e 0 Conceptual View
. Array

. B

|

5 7 30 74

Phase 1 — Top-down Upheap

. Heap 0
. Array

Conceptual View

1 18 56

>
@ IS @

67

Phase 1 — Top-down Upheap

. Heap 0
. Array

Conceptual View

w
@ S -

®

I

(S

68

Phase 1 — Top-down Upheap

. Heap 0
. Array

Conceptual View

1 0 56

N
- S @ o

69

Phase 1 — Top-down Upheap

. Heap 0
. Array

Conceptual View

N
- N @

70

Phase 1 — Complete

. Heap 0
. Array

Conceptual View

1 0 74

N
- 123 @ N

71

72

12

Phase 2 — Remove Root

. Heap 0
. Array

)
- @ @ N

Conceptual View

Phase 2 — Remove Root

. Heap 0
. Array

1)

>
- afl w N
.aaa.a

Conceptual View

73

Phase 2 — Downheap

. Heap 0
. Array

[N
- w &
.aaaaa

Conceptual View

74

Phase 2 — Remove Root

. Heap 0
. Array

1 0

N
S @ o

Conceptual View

75

Phase 2 — Downheap

. Heap 0
. Array

N
@ S @ —

Conceptual View

76

Phase 2 — Remove Root

. Heap 0
. Array

1 0

N
@ = @ &

Conceptual View

77

78

13

Phase 2 — Downheap

. Heap 0
. Array

3 42

)
- @

Conceptual View

=

Phase 2 — Remove Root

. Heap 0
. Array

Conceptual View

=
=

3 42

)
@

79

Phase 2 — Remove Root

. Heap 0
. Array

-

3 42

N

Conceptual View

=

80

Phase 2 — Remove Root

. Heap 0

- Conceptual View
. Array

=0

0

4 56

N

81

Complete

. Heap 0
. Array

©

w
N IS =
aaaa.a

Conceptual View

82

Merge Sort vs. Heap Sort

= Heap-Sort allows us to sort any array in
O(n log n) just like Merge-Sort & Quicksort
= However, there is no overhead

» Heap-Sort can be sorted in-place, meaning auxiliary
storage is O(1)

» Merge-Sort, however, requires O(n)
 Quick-Sort can become O(n?)

83

84

14

Merge Sort vs. Heap Sort Heap Sort Summary

= However, in some cases, the recursive nature of Heap Sort

Merge Sort is better

Time Average O(n log n)
* easy to distribute to multiple computers Time Best O(n log n)
* Heap-Sort uses the entire array — not online Time Worst O(nlog)
= But...in the Real World, it gets complex Auxiliary space o(1)

+ you can cut an array into sub-lists, send them to different Stable
machines which Heap-Sort them

* ...and then you Merge

No — Equal element order not preserved

Online? No

85 86

Summary of Sorting Algorithms

Sort Algorithm Best Average Worst Aux. Storage
Bubble o) o(n?) o) o)
Selection om) o(n?) om) o(1)
Insertion o) o(n?) om) o)
Shell o(n log n) on®4) o(n?) o(1)
Merge o(n log n) o(n log n) o(n log n) o)
Quick O(n log n) o(n log n) om) o(1)
Heap o(n log n) o(n log n) O(n log n) o)
Radix O(k x n) O(k x n) O(k x n) ofb +n)

- [

87

15

