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Heaps & Priority 

Queues

Part 9

Heaps

Piles of data!

 A heap is a binary tree, but a 

notable format to the nodes

 The value of a node is 
smaller (or larger) than both

of its children

 Every subtree is a heap

What is a heap?

Trees

last node
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Terminology Warning

 The heap data structure is not

the same as the operating 

system's heap

 They are often confused…

 The heap data structure is a 

tree that stores "heavier" 

objects at the bottom
Trees
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 Min-heap

• each of a node's descendants have a "heavier" value

• stores smaller items (minimal items) at the top of the tree

 Max-heap 

• each node's parent has a "heavier" value

• stores larger items (maximum items) at the top of the tree

Min and max-heaps
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Min and max-heaps
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Heaps
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 Heaps are complete

binary trees

 Nodes are added in 

breadth-first order

 The resulting tree is 

always optimal and 

balanced
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Height of a Heap
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 Let i be the depth of a node

 Then, there are 2i nodes of 

depth i

 Heap always has a height of 
log2(n)

Trees

Height of a Heap

Spring 2024 Sacramento State - Cook - CSc 130 9

1. Begin at next available position for a leaf

2. Now the item needs to be up-heaped

• move the entry up depending on its value until a correct 
position is found

• as this is done, nodes are swapped  - parent to child 
change position

• since a heap always has height log2(n), upheap runs in 
O(log n) time

Adding a Node
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Min-heap: Adding a Node 13
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Min-heap: Adding a Node 13
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Min-heap: Adding a Node 13
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51

Total Up-heap-val
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 Just to make matters confusing, 
up-heap is also known by various 
other terms – which are all valid

 These are some:

• bubble-up

• percolate-up

• sift-up 

• heapify-up 

• cascade-up

 Deleting a node is quite different from adding

 Heaps must maintain completeness

• so, the right-most leaf is needed to replace the deleted 

node

• why? We replace the deleted node with the last one 

added.

Deleting a Node
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 The steps to delete:

1. remove the node 

2. replace it with the right-most leaf

3. now, it needs to down-heaped (moved down) to the 

correct location

 This runs in O(log n) time

Deleting a Node
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 With a heap, every node has two children

• as you downheap, you swap nodes 

• so, which one do you select?

 Preserve the heap structure ← vital

• on a min-heap, swap with the smallest child

• on a max-heap, swap with the largest child

Downheap Algorithm
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Min-heap: Deleting 25
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Replace. Now must down-heap.
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Replace. Now must down-heap.
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As You Expected...
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 Just like up-heap, down-heap has 
several other, completely valid, 
names

 These are some:

• bubble-down

• percolate-down

• sift-down

• heapify-down

• cascade-down 
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Priority Queues

Queues can play favorites

 A stack is first-in-last-out

 A queue is first-in-first-out

 A priority queue is 

modification of the queue 
ADT that follows the logic of 

first-in-least-out

Priority Queues
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 The "least" element is the first 
one that is removed

 If two items have the same 
"rank", items can be queued 
as normal

 The object's key can be used 
to determine if it is "least", but 
any field will do

First-in-Least-Out
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 Meaning of "least" is defined by the ADT

 It is abstract - does not mean "less than"

• so, "least" can be any way of ranking items

• ...if the items are mathematically transitive 

• "least" can be the largest value

 Examples of least:

• the smallest / largest value

• some ranking classification

What is the "Least" Item?
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public class PriorityQueue

Create an empty PQ PriorityQueue()

Same as enqueue()add(Item item)void

Same as dequeue()removeLeast()Item

Same as peek(), first()getLeast()Item

isEmpty()bool

size()int
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Priority Queue Interface

 Before we select a data 

structure to implement a 

priority queue, we should look 
how data will be used

 The goal is to get the best 
time efficiency with as little 

overhead as possible

Implementation
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 The type data to be stored 

will influence how the priority 

queue is implemented

 We have quite a few options:

• array

• linked-list

• tree / heap

Implementation
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 Unsorted array

• enqueue requires O(n) – resize array

• dequeue requires O(n) – search and moving

 Sorted array

• enqueue requires O(n) – find a position to insert and 

then move the rest

• dequeue requires O(n)

Implementation with an Array
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 Unsorted linked list

• enqueue takes O(1)

• dequeue requires O(n) – find & remove node

 Sorted linked list

• enqueue requires O(n) – must find a position and insert

• dequeue requires O(1) – just remove the head/tail

Implementation with a Linked List
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 Arrays have a time complexity of O(n) for Enqueue 

and Dequeue 

 Linked Lists did have a single O(1) operation, but 

the other was O(n)

 Given priority queues are updated often (just like 

normal queues), arrays and linked lists are poor

solutions

We Need Another Data Structure!
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 In some cases, the key value can have a minor 
range of values – possibly just a few

 Examples:

• hospital triage – immediate, delayed, minor

• computer processes – OS, application, GUI

 We can make clever hybrid structures that 
maximize efficiency

Hybrid Implementations
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 If the key contains a small number of values, you 
can use multiple queues – one for each key value

 Basically, the priority queue, internally, will have an 
array of queues

 Adding/removing items will always be O(1)

• O(1) for the queue head

• O(1) for enqueue/dequeue (using linked list)

Hybrid Implementations
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Medical Triage – Array of Queues

Dequeue Enqueue

Queue for each 

triage rank
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Immediate

Delayed

Minor

 However, in most cases, the key values have large

ranges

 For example, if the key is a 32-bit integer, do you 

want to create 4 million queues?

 Didn't think so….

 So, this only works in limited situations

... But Heaps are Universal
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 However, a priority queue can be implemented as 

a heap

 Remember...

• in a heap, all the items below a node have a greater 

value

• so, the root is the least item!

• heaps naturally implement a priority queue 

Implementation with a Heap
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 To enqueue an item...

• just add to it the heap

• it will up-heap to the correct 
position

• requires O(log n)

 To dequeue an item…

• just remove the root 

• requires O(log n) rebalance

Implementation with a Heap
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Medical Triage - Heap
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Heaps and 

Arrays

Not a Heap O' Trouble
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Heaps and Arrays
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 Heaps are complete, 
balanced, binary trees

 This rigid, predictable, 
structure...

• lends itself to being stored in 
an array

• each node has a pre-ordained 
location

Trees

Heaps and Arrays
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 Using an array, links between 

items are not explicitly stored

 Finding the location of an 

array item can found using 

simple mathematics

 Heaps are no different - due 

to their predictable structure

 Any node's parent and children can be computed 

mathematically

 Heap ADTs only need to…

• track the index of the end of the heap

• all new items are added here – before upheap

• and this is where the last item will be swapped for a 

deleted item (before it is downheaped)

Heaps and Arrays
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1 Indexed Array0 Indexed ArrayFind

i / 2(i – 1) / 2Parent of node i

2 * i(2 * i) + 1Left child of node i

(2 * i) + 1(2 * i) + 2Right child of node i
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Heap Array Math

Heap in an Array

Array
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Heap in an Array
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Heap Sort

Heap-a-rific algorithm!

 Heap Sort is an ingenious
algorithm that uses a max-
heap to sort an array

 John W. J. Williams invented 
both heaps and the Heap 
Sort in 1964 (0 ABW)

 The same year, the sort was 
improved by Robert Floyd

Heap Sort
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 Heap Sort takes advantage of 

the fact that a heap is a 

natural priority queue

 … and that a heap will always

add / remove from the right-
most leaf

Heap Sort
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 Phase 1: Heapify

• converts the existing array into 
a max-heap

 Phase 2: Empty the heap

• removes all the nodes (treating 
it as priority queue) 

• sorted data is added to the end
of the array

Heap Sort Works in Two Phases
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 Both the "heap" and the remaining array can be 

used in memory at the same time

 The sorted array is stored at the empty space after

the end of the heap

 This concept works for both Phase 1 and Phase 2

Implementation
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 In Phase 1, we convert the array into a max-heap. This 
step is called heapify.

 Remember....

• a heap can be stored in an array

• so, we can just look at the array as a heap 

• ...but, its not quite a heap yet

• data needs to be rearranged to turn the array into a heap

Phase 1: Array  Heap
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 First approach: top-down

• start building the heap at the top of the array

• iterate i starting at 0 and build a heap above i

• item are upheaped

 Second approach: bottom-up

• fastest approach is to downheap all the leaves 

• run the downheap, at the root, all the leaves

How do we convert it? 
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procedure heapify(array, count)

last = count - 1

n = 0                //First item

while (n <= last)

upHeap(array, 0, n - 1)

n++

end while

end procedure

Phase 1: Heapify (top down)
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procedure heapify(array, count)

last = count - 1

n = last //last item

while (n >= 0)

downHeap(array, n + 1, last)

n--

end while

end procedure

Phase 1: Heapify (top down)
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Phase 2: Root Deletion
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 Now that the array is a 

max-heap, the root 

contains the maximum 
item

 If we remove the root, 
we have the last item 

of the sorted array!

92
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Phase 2: Root Deletion
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 When we remove the 

root... right-most leaf is 

moved to the root 

 …and then 

downheaped into the 
correct position

50
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Phase 2: Root Deletion
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 Now the root contains 

the second-largest 

item in the array

 This leaf position is 

now empty
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Phase 2: Root Deletion
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 We can put the root, that was 

just removed, in this new 

empty space

 What a sec! We just put the 

largest item in the last
position in the array!

Phase 2: Root Deletion
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 So, to sort the array....

• so, we just keep removing the 
root and placing it position 
where the leaf was located

• the "heap" section of the array 
shrinks as the sorted array 
grows from the bottom

 OMG! Sooooo, awesome!

last = count - 1

heapify(array, 0, last)

while (last > 0) 

swap array[0] and array[last]

downHeap(0, last - 1)

last--

end while

Heap Sort Algorithm
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Phase 2 – Remove Root
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Phase 2 – Downheap
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Phase 2 – Downheap
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Conceptual View  Heap-Sort allows us to sort any array in

O(n log n) just like Merge-Sort & Quicksort

 However, there is no overhead

• Heap-Sort can be sorted in-place, meaning auxiliary 

storage is O(1)

• Merge-Sort, however, requires O(n)

• Quick-Sort can become O(n2)

Merge Sort vs. Heap Sort
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 However, in some cases, the recursive nature of 
Merge Sort is better

• easy to distribute to multiple computers

• Heap-Sort uses the entire array – not online

 But...in the Real World, it gets complex

• you can cut an array into sub-lists, send them to different 
machines which Heap-Sort them

• ... and then you Merge

Merge Sort vs. Heap Sort
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Heap Sort

O(n log n)Time Average

O(n log n)Time Best

O(n log n)Time Worst

O(1) Auxiliary space

No – Equal element order not preservedStable

NoOnline?
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Heap Sort Summary

Aux. StorageWorstAverageBestSort Algorithm

O(1)O(n2)O(n2)O(n2)Bubble

O(1)O(n2)O(n2)O(n2)Selection

O(1)O(n2)O(n2)O(n)Insertion

O(1)O(n3/2)O(n5/4)O(n log n)Shell

O(n)O(n log n)O(n log n)O(n log n)Merge

O(1)O(n2)O(n log n)O(n log n)Quick

O(1)O(n log n)O(n log n)O(n log n)Heap

O(b + n)O(k × n)O(k × n)O(k × n)Radix
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Summary of Sorting Algorithms
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