
1

Heaps & Priority

Queues

Part 9

Heaps

Piles of data!

 A heap is a binary tree, but a

notable format to the nodes

 The value of a node is
smaller (or larger) than both

of its children

 Every subtree is a heap

What is a heap?

Trees

last node

Spring 2024 Sacramento State - Cook - CSc 130 3

Terminology Warning

 The heap data structure is not

the same as the operating

system's heap

 They are often confused…

 The heap data structure is a

tree that stores "heavier"

objects at the bottom
Trees

Spring 2024 Sacramento State - Cook - CSc 130 4

 Min-heap

• each of a node's descendants have a "heavier" value

• stores smaller items (minimal items) at the top of the tree

 Max-heap

• each node's parent has a "heavier" value

• stores larger items (maximum items) at the top of the tree

Min and max-heaps

Spring 2024 Sacramento State - Cook - CSc 130 5

Min and max-heaps

7

1912

16 40 22 50

3529

min-heap max-heap

Spring 2024 Sacramento State - Cook - CSc 130 6

92

7749

40 42 22 50

3529

1 2

3 4

5 6

2

Heaps

Spring 2024 Sacramento State - Cook - CSc 130 7

 Heaps are complete

binary trees

 Nodes are added in

breadth-first order

 The resulting tree is

always optimal and

balanced

7

1912

16 40 22 50

3529

Height of a Heap

Spring 2024 Sacramento State - Cook - CSc 130 8

 Let i be the depth of a node

 Then, there are 2i nodes of

depth i

 Heap always has a height of
log2(n)

Trees

Height of a Heap

Spring 2024 Sacramento State - Cook - CSc 130 9

1. Begin at next available position for a leaf

2. Now the item needs to be up-heaped

• move the entry up depending on its value until a correct
position is found

• as this is done, nodes are swapped - parent to child
change position

• since a heap always has height log2(n), upheap runs in
O(log n) time

Adding a Node

Spring 2024 Sacramento State - Cook - CSc 130 10

Min-heap: Adding a Node 13

5

3225

56 26 51

50 76 8076 61

62

Spring 2024 Sacramento State - Cook - CSc 130 11

Min-heap: Adding a Node 13

5

3225

56 26

50 76 8076 61

62

Spring 2024 Sacramento State - Cook - CSc 130 12

51

13

7 8

9 10

11 12

3

Min-heap: Adding a Node 13

5

25

56 26

50 76 8076 61

62

Spring 2024 Sacramento State - Cook - CSc 130 13

51

32

13

Min-heap: Adding a Node 13

5

1325

56 26 32

50 76 8076 61

62

Spring 2024 Sacramento State - Cook - CSc 130 14

51

Total Up-heap-val

Spring 2024 Sacramento State - Cook - CSc 130 15

 Just to make matters confusing,
up-heap is also known by various
other terms – which are all valid

 These are some:

• bubble-up

• percolate-up

• sift-up

• heapify-up

• cascade-up

 Deleting a node is quite different from adding

 Heaps must maintain completeness

• so, the right-most leaf is needed to replace the deleted

node

• why? We replace the deleted node with the last one

added.

Deleting a Node

Spring 2024 Sacramento State - Cook - CSc 130 16

 The steps to delete:

1. remove the node

2. replace it with the right-most leaf

3. now, it needs to down-heaped (moved down) to the

correct location

 This runs in O(log n) time

Deleting a Node

Spring 2024 Sacramento State - Cook - CSc 130 17

 With a heap, every node has two children

• as you downheap, you swap nodes

• so, which one do you select?

 Preserve the heap structure ← vital

• on a min-heap, swap with the smallest child

• on a max-heap, swap with the largest child

Downheap Algorithm

Spring 2024 Sacramento State - Cook - CSc 130 18

13 14

15 16

17 18

4

Min-heap: Deleting 25

Spring 2024 Sacramento State - Cook - CSc 130 19

5

3225

56 26 51

50 7676 61

62

80

Replace. Now must down-heap.

Spring 2024 Sacramento State - Cook - CSc 130 20

5

3280

56 26 51

50 7676 61

62

Replace. Now must down-heap.

Spring 2024 Sacramento State - Cook - CSc 130 21

5

32

56 51

50 7676 61

62

80

26

Replace. Now must down-heap.

Spring 2024 Sacramento State - Cook - CSc 130 22

5

32

56 51

7676 61

62

26

50

80

Replace. Now must down-heap.

Spring 2024 Sacramento State - Cook - CSc 130 23

5

32

56 51

7676 61

62

26

80

50

As You Expected...

Spring 2024 Sacramento State - Cook - CSc 130 24

 Just like up-heap, down-heap has
several other, completely valid,
names

 These are some:

• bubble-down

• percolate-down

• sift-down

• heapify-down

• cascade-down

19 20

21 22

23 24

5

Priority Queues

Queues can play favorites

 A stack is first-in-last-out

 A queue is first-in-first-out

 A priority queue is

modification of the queue
ADT that follows the logic of

first-in-least-out

Priority Queues

Spring 2024 Sacramento State - Cook - CSc 130 26

 The "least" element is the first
one that is removed

 If two items have the same
"rank", items can be queued
as normal

 The object's key can be used
to determine if it is "least", but
any field will do

First-in-Least-Out

Spring 2024 Sacramento State - Cook - CSc 130 27

 Meaning of "least" is defined by the ADT

 It is abstract - does not mean "less than"

• so, "least" can be any way of ranking items

• ...if the items are mathematically transitive

• "least" can be the largest value

 Examples of least:

• the smallest / largest value

• some ranking classification

What is the "Least" Item?

Spring 2024 Sacramento State - Cook - CSc 130 28

public class PriorityQueue

Create an empty PQ PriorityQueue()

Same as enqueue()add(Item item)void

Same as dequeue()removeLeast()Item

Same as peek(), first()getLeast()Item

isEmpty()bool

size()int

Spring 2024 Sacramento State - Cook - CSc 130 29

Priority Queue Interface

 Before we select a data

structure to implement a

priority queue, we should look
how data will be used

 The goal is to get the best
time efficiency with as little

overhead as possible

Implementation

Spring 2024 Sacramento State - Cook - CSc 130 30

25 26

27 28

29 30

6

 The type data to be stored

will influence how the priority

queue is implemented

 We have quite a few options:

• array

• linked-list

• tree / heap

Implementation

Spring 2024 Sacramento State - Cook - CSc 130 31

 Unsorted array

• enqueue requires O(n) – resize array

• dequeue requires O(n) – search and moving

 Sorted array

• enqueue requires O(n) – find a position to insert and

then move the rest

• dequeue requires O(n)

Implementation with an Array

Spring 2024 Sacramento State - Cook - CSc 130 32

 Unsorted linked list

• enqueue takes O(1)

• dequeue requires O(n) – find & remove node

 Sorted linked list

• enqueue requires O(n) – must find a position and insert

• dequeue requires O(1) – just remove the head/tail

Implementation with a Linked List

Spring 2024 Sacramento State - Cook - CSc 130 33

 Arrays have a time complexity of O(n) for Enqueue

and Dequeue

 Linked Lists did have a single O(1) operation, but

the other was O(n)

 Given priority queues are updated often (just like

normal queues), arrays and linked lists are poor

solutions

We Need Another Data Structure!

Spring 2024 Sacramento State - Cook - CSc 130 34

 In some cases, the key value can have a minor
range of values – possibly just a few

 Examples:

• hospital triage – immediate, delayed, minor

• computer processes – OS, application, GUI

 We can make clever hybrid structures that
maximize efficiency

Hybrid Implementations

Spring 2024 Sacramento State - Cook - CSc 130 35

 If the key contains a small number of values, you
can use multiple queues – one for each key value

 Basically, the priority queue, internally, will have an
array of queues

 Adding/removing items will always be O(1)

• O(1) for the queue head

• O(1) for enqueue/dequeue (using linked list)

Hybrid Implementations

Spring 2024 Sacramento State - Cook - CSc 130 36

31 32

33 34

35 36

7

Medical Triage – Array of Queues

Dequeue Enqueue

Queue for each

triage rank

Spring 2024 Sacramento State - Cook - CSc 130 37

Immediate

Delayed

Minor

 However, in most cases, the key values have large

ranges

 For example, if the key is a 32-bit integer, do you

want to create 4 million queues?

 Didn't think so….

 So, this only works in limited situations

... But Heaps are Universal

Spring 2024 Sacramento State - Cook - CSc 130 38

 However, a priority queue can be implemented as

a heap

 Remember...

• in a heap, all the items below a node have a greater

value

• so, the root is the least item!

• heaps naturally implement a priority queue

Implementation with a Heap

Spring 2024 Sacramento State - Cook - CSc 130 39

 To enqueue an item...

• just add to it the heap

• it will up-heap to the correct
position

• requires O(log n)

 To dequeue an item…

• just remove the root

• requires O(log n) rebalance

Implementation with a Heap

Spring 2024 Sacramento State - Cook - CSc 130 40

Medical Triage - Heap

Spring 2024 Sacramento State - Cook - CSc 130 41

Heaps and

Arrays

Not a Heap O' Trouble

37 38

39 40

41 42

8

Heaps and Arrays

Spring 2024 Sacramento State - Cook - CSc 130 43

 Heaps are complete,
balanced, binary trees

 This rigid, predictable,
structure...

• lends itself to being stored in
an array

• each node has a pre-ordained
location

Trees

Heaps and Arrays

Spring 2024 Sacramento State - Cook - CSc 130 44

 Using an array, links between

items are not explicitly stored

 Finding the location of an

array item can found using

simple mathematics

 Heaps are no different - due

to their predictable structure

 Any node's parent and children can be computed

mathematically

 Heap ADTs only need to…

• track the index of the end of the heap

• all new items are added here – before upheap

• and this is where the last item will be swapped for a

deleted item (before it is downheaped)

Heaps and Arrays

Spring 2024 Sacramento State - Cook - CSc 130 45

1 Indexed Array0 Indexed ArrayFind

i / 2(i – 1) / 2Parent of node i

2 * i(2 * i) + 1Left child of node i

(2 * i) + 1(2 * i) + 2Right child of node i

Spring 2024 Sacramento State - Cook - CSc 130 46

Heap Array Math

Heap in an Array

Array

1

3

2

4

5

0

a

cb

d e f

Spring 2024 Sacramento State - Cook - CSc 130 47

Heap in an Array

a

c

b

d

e

f

Array

1

3

2

4

5

0

a

cb

d e f

Spring 2024 Sacramento State - Cook - CSc 130 48

43 44

45 46

47 48

9

Heap Sort

Heap-a-rific algorithm!

 Heap Sort is an ingenious
algorithm that uses a max-
heap to sort an array

 John W. J. Williams invented
both heaps and the Heap
Sort in 1964 (0 ABW)

 The same year, the sort was
improved by Robert Floyd

Heap Sort

Spring 2024 Sacramento State - Cook - CSc 130 50

 Heap Sort takes advantage of

the fact that a heap is a

natural priority queue

 … and that a heap will always

add / remove from the right-
most leaf

Heap Sort

Spring 2024 Sacramento State - Cook - CSc 130 51

 Phase 1: Heapify

• converts the existing array into
a max-heap

 Phase 2: Empty the heap

• removes all the nodes (treating
it as priority queue)

• sorted data is added to the end
of the array

Heap Sort Works in Two Phases

Spring 2024 Sacramento State - Cook - CSc 130 52

 Both the "heap" and the remaining array can be

used in memory at the same time

 The sorted array is stored at the empty space after

the end of the heap

 This concept works for both Phase 1 and Phase 2

Implementation

Spring 2024 Sacramento State - Cook - CSc 130 53

 In Phase 1, we convert the array into a max-heap. This
step is called heapify.

 Remember....

• a heap can be stored in an array

• so, we can just look at the array as a heap

• ...but, its not quite a heap yet

• data needs to be rearranged to turn the array into a heap

Phase 1: Array  Heap

Spring 2024 Sacramento State - Cook - CSc 130 54

49 50

51 52

53 54

10

 First approach: top-down

• start building the heap at the top of the array

• iterate i starting at 0 and build a heap above i

• item are upheaped

 Second approach: bottom-up

• fastest approach is to downheap all the leaves

• run the downheap, at the root, all the leaves

How do we convert it?

Spring 2024 Sacramento State - Cook - CSc 130 55

procedure heapify(array, count)

last = count - 1

n = 0 //First item

while (n <= last)

upHeap(array, 0, n - 1)

n++

end while

end procedure

Phase 1: Heapify (top down)

Spring 2024 Sacramento State - Cook - CSc 130 56

procedure heapify(array, count)

last = count - 1

n = last //last item

while (n >= 0)

downHeap(array, n + 1, last)

n--

end while

end procedure

Phase 1: Heapify (top down)

Spring 2024 Sacramento State - Cook - CSc 130 57

Phase 2: Root Deletion

Spring 2024 Sacramento State - Cook - CSc 130 58

 Now that the array is a

max-heap, the root

contains the maximum
item

 If we remove the root,
we have the last item

of the sorted array!

92

7749

40 43 22 50

Phase 2: Root Deletion

Spring 2024 Sacramento State - Cook - CSc 130 59

 When we remove the

root... right-most leaf is

moved to the root

 …and then

downheaped into the
correct position

50

7749

40 43 22

Phase 2: Root Deletion

Spring 2024 Sacramento State - Cook - CSc 130 60

 Now the root contains

the second-largest

item in the array

 This leaf position is

now empty

77

5049

40 43 22

55 56

57 58

59 60

11

Phase 2: Root Deletion

Spring 2024 Sacramento State - Cook - CSc 130 61

 We can put the root, that was

just removed, in this new

empty space

 What a sec! We just put the

largest item in the last
position in the array!

Phase 2: Root Deletion

Spring 2024 Sacramento State - Cook - CSc 130 62

 So, to sort the array....

• so, we just keep removing the
root and placing it position
where the leaf was located

• the "heap" section of the array
shrinks as the sorted array
grows from the bottom

 OMG! Sooooo, awesome!

last = count - 1

heapify(array, 0, last)

while (last > 0)

swap array[0] and array[last]

downHeap(0, last - 1)

last--

end while

Heap Sort Algorithm

Spring 2024 Sacramento State - Cook - CSc 130 63

1

3

2

4

5

0

Phase 1 – Top-down Upheap

Heap

Array

42

56

18

7

30

74

Conceptual View

Spring 2024 Sacramento State - Cook - CSc 130 64

42

5618

7 30 74

1

3

2

4

5

0

Phase 1 – Top-down Upheap

Heap

Array

42

56

18

7

30

74

Conceptual View

Spring 2024 Sacramento State - Cook - CSc 130 65

42

5618

7 30 74

1

3

2

4

5

0

Phase 1 – Top-down Upheap

Heap

Array

42

56

18

7

30

74

Conceptual View

Spring 2024 Sacramento State - Cook - CSc 130 66

42

5618

7 30 74

61 62

63 64

65 66

12

1

3

2

4

5

0

Phase 1 – Top-down Upheap

Heap

Array

18

7

30

74

Conceptual View

Spring 2024 Sacramento State - Cook - CSc 130 67

18

7 30 74

42

56

42

56

1

3

2

4

5

0

Phase 1 – Top-down Upheap

Heap

Array

42

56

18

7

30

74

Conceptual View

Spring 2024 Sacramento State - Cook - CSc 130 68

56

4218

7 30 74

1

3

2

4

5

0

Phase 1 – Top-down Upheap

Heap

Array

42

56

7

74

Conceptual View

Spring 2024 Sacramento State - Cook - CSc 130 69

56

42

7 74

18

30

18

30

1

3

2

4

5

0

Phase 1 – Top-down Upheap

Heap

Array

56

30

7

18

Conceptual View

Spring 2024 Sacramento State - Cook - CSc 130 70

30

7 18

56

42

74

42

74

1

3

2

4

5

0

Phase 1 – Top-down Upheap

Heap

Array

42

30

7

18

Conceptual View

Spring 2024 Sacramento State - Cook - CSc 130 71

30

7 18

56

74

42

56

74

1

3

2

4

5

0

Phase 1 – Complete

Heap

Array

56

74

30

7

18

42

Conceptual View

Spring 2024 Sacramento State - Cook - CSc 130 72

74

5630

7 18 42

67 68

69 70

71 72

13

Phase 2 – Remove Root

Spring 2024 Sacramento State - Cook - CSc 130 73

1

3

2

4

5

0Heap

Array

56

74

30

7

18

42

Conceptual View

74

5630

7 18 42

Phase 2 – Remove Root

Spring 2024 Sacramento State - Cook - CSc 130 74

1

3

2

4

5

0Heap

Array

56

74

30

7

18

42

Conceptual View

74

5630

7 18 42

Phase 2 – Downheap

Spring 2024 Sacramento State - Cook - CSc 130 75

1

3

2

4

5

0Heap

Array

56

74

30

7

18

42 Conceptual View

30

7 18

42

56

Phase 2 – Remove Root

Spring 2024 Sacramento State - Cook - CSc 130 76

1

3

2

4

5

0Heap

Array

42

56

30

7

18

74

Conceptual View

56

4230

7 18

Phase 2 – Downheap

Spring 2024 Sacramento State - Cook - CSc 130 77

1

3

2

4

5

0Heap

Array

42

56

30

7

18

74

Conceptual View

18

4230

7

Phase 2 – Remove Root

Spring 2024 Sacramento State - Cook - CSc 130 78

1

3

2

4

5

0Heap

Array

18

42

30

7

56

74

Conceptual View

42

1830

7

73 74

75 76

77 78

14

Phase 2 – Downheap

Spring 2024 Sacramento State - Cook - CSc 130 79

1

3

2

4

5

0Heap

Array

18

42

30

7

56

74

Conceptual View

7

1830

Phase 2 – Remove Root

Spring 2024 Sacramento State - Cook - CSc 130 80

1

3

2

4

5

0Heap

Array

18

30

7

42

56

74

Conceptual View

30

187

Phase 2 – Remove Root

Spring 2024 Sacramento State - Cook - CSc 130 81

1

3

2

4

5

0Heap

Array

30

18

7

42

56

74

Conceptual View

18

7

Phase 2 – Remove Root

Spring 2024 Sacramento State - Cook - CSc 130 82

1

3

2

4

5

0Heap

Array

30

7

18

42

56

74

Conceptual View

7

Complete

Spring 2024 Sacramento State - Cook - CSc 130 83

1

3

2

4

5

0Heap

Array

30

7

18

42

56

74

Conceptual View  Heap-Sort allows us to sort any array in

O(n log n) just like Merge-Sort & Quicksort

 However, there is no overhead

• Heap-Sort can be sorted in-place, meaning auxiliary

storage is O(1)

• Merge-Sort, however, requires O(n)

• Quick-Sort can become O(n2)

Merge Sort vs. Heap Sort

Spring 2024 Sacramento State - Cook - CSc 130 84

79 80

81 82

83 84

15

 However, in some cases, the recursive nature of
Merge Sort is better

• easy to distribute to multiple computers

• Heap-Sort uses the entire array – not online

 But...in the Real World, it gets complex

• you can cut an array into sub-lists, send them to different
machines which Heap-Sort them

• ... and then you Merge

Merge Sort vs. Heap Sort

Spring 2024 Sacramento State - Cook - CSc 130 85

Heap Sort

O(n log n)Time Average

O(n log n)Time Best

O(n log n)Time Worst

O(1) Auxiliary space

No – Equal element order not preservedStable

NoOnline?

Spring 2024 Sacramento State - Cook - CSc 130 86

Heap Sort Summary

Aux. StorageWorstAverageBestSort Algorithm

O(1)O(n2)O(n2)O(n2)Bubble

O(1)O(n2)O(n2)O(n2)Selection

O(1)O(n2)O(n2)O(n)Insertion

O(1)O(n3/2)O(n5/4)O(n log n)Shell

O(n)O(n log n)O(n log n)O(n log n)Merge

O(1)O(n2)O(n log n)O(n log n)Quick

O(1)O(n log n)O(n log n)O(n log n)Heap

O(b + n)O(k × n)O(k × n)O(k × n)Radix

Spring 2024 Sacramento State - Cook - CSc 130 87

Summary of Sorting Algorithms

85 86

87

