
1

Heaps & Priority

Queues

Part 9

Heaps

Piles of data!

 A heap is a binary tree, but a

notable format to the nodes

 The value of a node is
smaller (or larger) than both

of its children

 Every subtree is a heap

What is a heap?

Trees

last node

Spring 2024 Sacramento State - Cook - CSc 130 3

Terminology Warning

 The heap data structure is not

the same as the operating

system's heap

 They are often confused…

 The heap data structure is a

tree that stores "heavier"

objects at the bottom
Trees

Spring 2024 Sacramento State - Cook - CSc 130 4

 Min-heap

• each of a node's descendants have a "heavier" value

• stores smaller items (minimal items) at the top of the tree

 Max-heap

• each node's parent has a "heavier" value

• stores larger items (maximum items) at the top of the tree

Min and max-heaps

Spring 2024 Sacramento State - Cook - CSc 130 5

Min and max-heaps

7

1912

16 40 22 50

3529

min-heap max-heap

Spring 2024 Sacramento State - Cook - CSc 130 6

92

7749

40 42 22 50

3529

1 2

3 4

5 6

2

Heaps

Spring 2024 Sacramento State - Cook - CSc 130 7

 Heaps are complete

binary trees

 Nodes are added in

breadth-first order

 The resulting tree is

always optimal and

balanced

7

1912

16 40 22 50

3529

Height of a Heap

Spring 2024 Sacramento State - Cook - CSc 130 8

 Let i be the depth of a node

 Then, there are 2i nodes of

depth i

 Heap always has a height of
log2(n)

Trees

Height of a Heap

Spring 2024 Sacramento State - Cook - CSc 130 9

1. Begin at next available position for a leaf

2. Now the item needs to be up-heaped

• move the entry up depending on its value until a correct
position is found

• as this is done, nodes are swapped - parent to child
change position

• since a heap always has height log2(n), upheap runs in
O(log n) time

Adding a Node

Spring 2024 Sacramento State - Cook - CSc 130 10

Min-heap: Adding a Node 13

5

3225

56 26 51

50 76 8076 61

62

Spring 2024 Sacramento State - Cook - CSc 130 11

Min-heap: Adding a Node 13

5

3225

56 26

50 76 8076 61

62

Spring 2024 Sacramento State - Cook - CSc 130 12

51

13

7 8

9 10

11 12

3

Min-heap: Adding a Node 13

5

25

56 26

50 76 8076 61

62

Spring 2024 Sacramento State - Cook - CSc 130 13

51

32

13

Min-heap: Adding a Node 13

5

1325

56 26 32

50 76 8076 61

62

Spring 2024 Sacramento State - Cook - CSc 130 14

51

Total Up-heap-val

Spring 2024 Sacramento State - Cook - CSc 130 15

 Just to make matters confusing,
up-heap is also known by various
other terms – which are all valid

 These are some:

• bubble-up

• percolate-up

• sift-up

• heapify-up

• cascade-up

 Deleting a node is quite different from adding

 Heaps must maintain completeness

• so, the right-most leaf is needed to replace the deleted

node

• why? We replace the deleted node with the last one

added.

Deleting a Node

Spring 2024 Sacramento State - Cook - CSc 130 16

 The steps to delete:

1. remove the node

2. replace it with the right-most leaf

3. now, it needs to down-heaped (moved down) to the

correct location

 This runs in O(log n) time

Deleting a Node

Spring 2024 Sacramento State - Cook - CSc 130 17

 With a heap, every node has two children

• as you downheap, you swap nodes

• so, which one do you select?

 Preserve the heap structure ← vital

• on a min-heap, swap with the smallest child

• on a max-heap, swap with the largest child

Downheap Algorithm

Spring 2024 Sacramento State - Cook - CSc 130 18

13 14

15 16

17 18

4

Min-heap: Deleting 25

Spring 2024 Sacramento State - Cook - CSc 130 19

5

3225

56 26 51

50 7676 61

62

80

Replace. Now must down-heap.

Spring 2024 Sacramento State - Cook - CSc 130 20

5

3280

56 26 51

50 7676 61

62

Replace. Now must down-heap.

Spring 2024 Sacramento State - Cook - CSc 130 21

5

32

56 51

50 7676 61

62

80

26

Replace. Now must down-heap.

Spring 2024 Sacramento State - Cook - CSc 130 22

5

32

56 51

7676 61

62

26

50

80

Replace. Now must down-heap.

Spring 2024 Sacramento State - Cook - CSc 130 23

5

32

56 51

7676 61

62

26

80

50

As You Expected...

Spring 2024 Sacramento State - Cook - CSc 130 24

 Just like up-heap, down-heap has
several other, completely valid,
names

 These are some:

• bubble-down

• percolate-down

• sift-down

• heapify-down

• cascade-down

19 20

21 22

23 24

5

Priority Queues

Queues can play favorites

 A stack is first-in-last-out

 A queue is first-in-first-out

 A priority queue is

modification of the queue
ADT that follows the logic of

first-in-least-out

Priority Queues

Spring 2024 Sacramento State - Cook - CSc 130 26

 The "least" element is the first
one that is removed

 If two items have the same
"rank", items can be queued
as normal

 The object's key can be used
to determine if it is "least", but
any field will do

First-in-Least-Out

Spring 2024 Sacramento State - Cook - CSc 130 27

 Meaning of "least" is defined by the ADT

 It is abstract - does not mean "less than"

• so, "least" can be any way of ranking items

• ...if the items are mathematically transitive

• "least" can be the largest value

 Examples of least:

• the smallest / largest value

• some ranking classification

What is the "Least" Item?

Spring 2024 Sacramento State - Cook - CSc 130 28

public class PriorityQueue

Create an empty PQ PriorityQueue()

Same as enqueue()add(Item item)void

Same as dequeue()removeLeast()Item

Same as peek(), first()getLeast()Item

isEmpty()bool

size()int

Spring 2024 Sacramento State - Cook - CSc 130 29

Priority Queue Interface

 Before we select a data

structure to implement a

priority queue, we should look
how data will be used

 The goal is to get the best
time efficiency with as little

overhead as possible

Implementation

Spring 2024 Sacramento State - Cook - CSc 130 30

25 26

27 28

29 30

6

 The type data to be stored

will influence how the priority

queue is implemented

 We have quite a few options:

• array

• linked-list

• tree / heap

Implementation

Spring 2024 Sacramento State - Cook - CSc 130 31

 Unsorted array

• enqueue requires O(n) – resize array

• dequeue requires O(n) – search and moving

 Sorted array

• enqueue requires O(n) – find a position to insert and

then move the rest

• dequeue requires O(n)

Implementation with an Array

Spring 2024 Sacramento State - Cook - CSc 130 32

 Unsorted linked list

• enqueue takes O(1)

• dequeue requires O(n) – find & remove node

 Sorted linked list

• enqueue requires O(n) – must find a position and insert

• dequeue requires O(1) – just remove the head/tail

Implementation with a Linked List

Spring 2024 Sacramento State - Cook - CSc 130 33

 Arrays have a time complexity of O(n) for Enqueue

and Dequeue

 Linked Lists did have a single O(1) operation, but

the other was O(n)

 Given priority queues are updated often (just like

normal queues), arrays and linked lists are poor

solutions

We Need Another Data Structure!

Spring 2024 Sacramento State - Cook - CSc 130 34

 In some cases, the key value can have a minor
range of values – possibly just a few

 Examples:

• hospital triage – immediate, delayed, minor

• computer processes – OS, application, GUI

 We can make clever hybrid structures that
maximize efficiency

Hybrid Implementations

Spring 2024 Sacramento State - Cook - CSc 130 35

 If the key contains a small number of values, you
can use multiple queues – one for each key value

 Basically, the priority queue, internally, will have an
array of queues

 Adding/removing items will always be O(1)

• O(1) for the queue head

• O(1) for enqueue/dequeue (using linked list)

Hybrid Implementations

Spring 2024 Sacramento State - Cook - CSc 130 36

31 32

33 34

35 36

7

Medical Triage – Array of Queues

Dequeue Enqueue

Queue for each

triage rank

Spring 2024 Sacramento State - Cook - CSc 130 37

Immediate

Delayed

Minor

 However, in most cases, the key values have large

ranges

 For example, if the key is a 32-bit integer, do you

want to create 4 million queues?

 Didn't think so….

 So, this only works in limited situations

... But Heaps are Universal

Spring 2024 Sacramento State - Cook - CSc 130 38

 However, a priority queue can be implemented as

a heap

 Remember...

• in a heap, all the items below a node have a greater

value

• so, the root is the least item!

• heaps naturally implement a priority queue

Implementation with a Heap

Spring 2024 Sacramento State - Cook - CSc 130 39

 To enqueue an item...

• just add to it the heap

• it will up-heap to the correct
position

• requires O(log n)

 To dequeue an item…

• just remove the root

• requires O(log n) rebalance

Implementation with a Heap

Spring 2024 Sacramento State - Cook - CSc 130 40

Medical Triage - Heap

Spring 2024 Sacramento State - Cook - CSc 130 41

Heaps and

Arrays

Not a Heap O' Trouble

37 38

39 40

41 42

8

Heaps and Arrays

Spring 2024 Sacramento State - Cook - CSc 130 43

 Heaps are complete,
balanced, binary trees

 This rigid, predictable,
structure...

• lends itself to being stored in
an array

• each node has a pre-ordained
location

Trees

Heaps and Arrays

Spring 2024 Sacramento State - Cook - CSc 130 44

 Using an array, links between

items are not explicitly stored

 Finding the location of an

array item can found using

simple mathematics

 Heaps are no different - due

to their predictable structure

 Any node's parent and children can be computed

mathematically

 Heap ADTs only need to…

• track the index of the end of the heap

• all new items are added here – before upheap

• and this is where the last item will be swapped for a

deleted item (before it is downheaped)

Heaps and Arrays

Spring 2024 Sacramento State - Cook - CSc 130 45

1 Indexed Array0 Indexed ArrayFind

i / 2(i – 1) / 2Parent of node i

2 * i(2 * i) + 1Left child of node i

(2 * i) + 1(2 * i) + 2Right child of node i

Spring 2024 Sacramento State - Cook - CSc 130 46

Heap Array Math

Heap in an Array

Array

1

3

2

4

5

0

a

cb

d e f

Spring 2024 Sacramento State - Cook - CSc 130 47

Heap in an Array

a

c

b

d

e

f

Array

1

3

2

4

5

0

a

cb

d e f

Spring 2024 Sacramento State - Cook - CSc 130 48

43 44

45 46

47 48

9

Heap Sort

Heap-a-rific algorithm!

 Heap Sort is an ingenious
algorithm that uses a max-
heap to sort an array

 John W. J. Williams invented
both heaps and the Heap
Sort in 1964 (0 ABW)

 The same year, the sort was
improved by Robert Floyd

Heap Sort

Spring 2024 Sacramento State - Cook - CSc 130 50

 Heap Sort takes advantage of

the fact that a heap is a

natural priority queue

 … and that a heap will always

add / remove from the right-
most leaf

Heap Sort

Spring 2024 Sacramento State - Cook - CSc 130 51

 Phase 1: Heapify

• converts the existing array into
a max-heap

 Phase 2: Empty the heap

• removes all the nodes (treating
it as priority queue)

• sorted data is added to the end
of the array

Heap Sort Works in Two Phases

Spring 2024 Sacramento State - Cook - CSc 130 52

 Both the "heap" and the remaining array can be

used in memory at the same time

 The sorted array is stored at the empty space after

the end of the heap

 This concept works for both Phase 1 and Phase 2

Implementation

Spring 2024 Sacramento State - Cook - CSc 130 53

 In Phase 1, we convert the array into a max-heap. This
step is called heapify.

 Remember....

• a heap can be stored in an array

• so, we can just look at the array as a heap

• ...but, its not quite a heap yet

• data needs to be rearranged to turn the array into a heap

Phase 1: Array Heap

Spring 2024 Sacramento State - Cook - CSc 130 54

49 50

51 52

53 54

10

 First approach: top-down

• start building the heap at the top of the array

• iterate i starting at 0 and build a heap above i

• item are upheaped

 Second approach: bottom-up

• fastest approach is to downheap all the leaves

• run the downheap, at the root, all the leaves

How do we convert it?

Spring 2024 Sacramento State - Cook - CSc 130 55

procedure heapify(array, count)

last = count - 1

n = 0 //First item

while (n <= last)

upHeap(array, 0, n - 1)

n++

end while

end procedure

Phase 1: Heapify (top down)

Spring 2024 Sacramento State - Cook - CSc 130 56

procedure heapify(array, count)

last = count - 1

n = last //last item

while (n >= 0)

downHeap(array, n + 1, last)

n--

end while

end procedure

Phase 1: Heapify (top down)

Spring 2024 Sacramento State - Cook - CSc 130 57

Phase 2: Root Deletion

Spring 2024 Sacramento State - Cook - CSc 130 58

 Now that the array is a

max-heap, the root

contains the maximum
item

 If we remove the root,
we have the last item

of the sorted array!

92

7749

40 43 22 50

Phase 2: Root Deletion

Spring 2024 Sacramento State - Cook - CSc 130 59

 When we remove the

root... right-most leaf is

moved to the root

 …and then

downheaped into the
correct position

50

7749

40 43 22

Phase 2: Root Deletion

Spring 2024 Sacramento State - Cook - CSc 130 60

 Now the root contains

the second-largest

item in the array

 This leaf position is

now empty

77

5049

40 43 22

55 56

57 58

59 60

11

Phase 2: Root Deletion

Spring 2024 Sacramento State - Cook - CSc 130 61

 We can put the root, that was

just removed, in this new

empty space

 What a sec! We just put the

largest item in the last
position in the array!

Phase 2: Root Deletion

Spring 2024 Sacramento State - Cook - CSc 130 62

 So, to sort the array....

• so, we just keep removing the
root and placing it position
where the leaf was located

• the "heap" section of the array
shrinks as the sorted array
grows from the bottom

 OMG! Sooooo, awesome!

last = count - 1

heapify(array, 0, last)

while (last > 0)

swap array[0] and array[last]

downHeap(0, last - 1)

last--

end while

Heap Sort Algorithm

Spring 2024 Sacramento State - Cook - CSc 130 63

1

3

2

4

5

0

Phase 1 – Top-down Upheap

Heap

Array

42

56

18

7

30

74

Conceptual View

Spring 2024 Sacramento State - Cook - CSc 130 64

42

5618

7 30 74

1

3

2

4

5

0

Phase 1 – Top-down Upheap

Heap

Array

42

56

18

7

30

74

Conceptual View

Spring 2024 Sacramento State - Cook - CSc 130 65

42

5618

7 30 74

1

3

2

4

5

0

Phase 1 – Top-down Upheap

Heap

Array

42

56

18

7

30

74

Conceptual View

Spring 2024 Sacramento State - Cook - CSc 130 66

42

5618

7 30 74

61 62

63 64

65 66

12

1

3

2

4

5

0

Phase 1 – Top-down Upheap

Heap

Array

18

7

30

74

Conceptual View

Spring 2024 Sacramento State - Cook - CSc 130 67

18

7 30 74

42

56

42

56

1

3

2

4

5

0

Phase 1 – Top-down Upheap

Heap

Array

42

56

18

7

30

74

Conceptual View

Spring 2024 Sacramento State - Cook - CSc 130 68

56

4218

7 30 74

1

3

2

4

5

0

Phase 1 – Top-down Upheap

Heap

Array

42

56

7

74

Conceptual View

Spring 2024 Sacramento State - Cook - CSc 130 69

56

42

7 74

18

30

18

30

1

3

2

4

5

0

Phase 1 – Top-down Upheap

Heap

Array

56

30

7

18

Conceptual View

Spring 2024 Sacramento State - Cook - CSc 130 70

30

7 18

56

42

74

42

74

1

3

2

4

5

0

Phase 1 – Top-down Upheap

Heap

Array

42

30

7

18

Conceptual View

Spring 2024 Sacramento State - Cook - CSc 130 71

30

7 18

56

74

42

56

74

1

3

2

4

5

0

Phase 1 – Complete

Heap

Array

56

74

30

7

18

42

Conceptual View

Spring 2024 Sacramento State - Cook - CSc 130 72

74

5630

7 18 42

67 68

69 70

71 72

13

Phase 2 – Remove Root

Spring 2024 Sacramento State - Cook - CSc 130 73

1

3

2

4

5

0Heap

Array

56

74

30

7

18

42

Conceptual View

74

5630

7 18 42

Phase 2 – Remove Root

Spring 2024 Sacramento State - Cook - CSc 130 74

1

3

2

4

5

0Heap

Array

56

74

30

7

18

42

Conceptual View

74

5630

7 18 42

Phase 2 – Downheap

Spring 2024 Sacramento State - Cook - CSc 130 75

1

3

2

4

5

0Heap

Array

56

74

30

7

18

42 Conceptual View

30

7 18

42

56

Phase 2 – Remove Root

Spring 2024 Sacramento State - Cook - CSc 130 76

1

3

2

4

5

0Heap

Array

42

56

30

7

18

74

Conceptual View

56

4230

7 18

Phase 2 – Downheap

Spring 2024 Sacramento State - Cook - CSc 130 77

1

3

2

4

5

0Heap

Array

42

56

30

7

18

74

Conceptual View

18

4230

7

Phase 2 – Remove Root

Spring 2024 Sacramento State - Cook - CSc 130 78

1

3

2

4

5

0Heap

Array

18

42

30

7

56

74

Conceptual View

42

1830

7

73 74

75 76

77 78

14

Phase 2 – Downheap

Spring 2024 Sacramento State - Cook - CSc 130 79

1

3

2

4

5

0Heap

Array

18

42

30

7

56

74

Conceptual View

7

1830

Phase 2 – Remove Root

Spring 2024 Sacramento State - Cook - CSc 130 80

1

3

2

4

5

0Heap

Array

18

30

7

42

56

74

Conceptual View

30

187

Phase 2 – Remove Root

Spring 2024 Sacramento State - Cook - CSc 130 81

1

3

2

4

5

0Heap

Array

30

18

7

42

56

74

Conceptual View

18

7

Phase 2 – Remove Root

Spring 2024 Sacramento State - Cook - CSc 130 82

1

3

2

4

5

0Heap

Array

30

7

18

42

56

74

Conceptual View

7

Complete

Spring 2024 Sacramento State - Cook - CSc 130 83

1

3

2

4

5

0Heap

Array

30

7

18

42

56

74

Conceptual View Heap-Sort allows us to sort any array in

O(n log n) just like Merge-Sort & Quicksort

 However, there is no overhead

• Heap-Sort can be sorted in-place, meaning auxiliary

storage is O(1)

• Merge-Sort, however, requires O(n)

• Quick-Sort can become O(n2)

Merge Sort vs. Heap Sort

Spring 2024 Sacramento State - Cook - CSc 130 84

79 80

81 82

83 84

15

 However, in some cases, the recursive nature of
Merge Sort is better

• easy to distribute to multiple computers

• Heap-Sort uses the entire array – not online

 But...in the Real World, it gets complex

• you can cut an array into sub-lists, send them to different
machines which Heap-Sort them

• ... and then you Merge

Merge Sort vs. Heap Sort

Spring 2024 Sacramento State - Cook - CSc 130 85

Heap Sort

O(n log n)Time Average

O(n log n)Time Best

O(n log n)Time Worst

O(1) Auxiliary space

No – Equal element order not preservedStable

NoOnline?

Spring 2024 Sacramento State - Cook - CSc 130 86

Heap Sort Summary

Aux. StorageWorstAverageBestSort Algorithm

O(1)O(n2)O(n2)O(n2)Bubble

O(1)O(n2)O(n2)O(n2)Selection

O(1)O(n2)O(n2)O(n)Insertion

O(1)O(n3/2)O(n5/4)O(n log n)Shell

O(n)O(n log n)O(n log n)O(n log n)Merge

O(1)O(n2)O(n log n)O(n log n)Quick

O(1)O(n log n)O(n log n)O(n log n)Heap

O(b + n)O(k × n)O(k × n)O(k × n)Radix

Spring 2024 Sacramento State - Cook - CSc 130 87

Summary of Sorting Algorithms

85 86

87

