

Base 1	l0 Num	ber				
	The nur	mber 178	<mark>33</mark> is			
	10 ⁴	10 ³	10 ²	10 ¹	10 ⁰	
	10000	1000	100	10	1	
	0	1	7	8	3	
	1000 + 7	700 + 80	+ 3 = 1	783		•
Spring 2024			Sacramento State - Cook - CSc 35			5

Binary Number Example

The number 0100 1010 is ...

27	2 ⁶	2 ⁵	24	2 ³	2 ²	2 ¹	2 ⁰
128	64	32	16	8	4	2	1
0	1	0	0	1	0	1	0

Hexadecimal Numbers

- Writing out long binary numbers is cumbersome and error prone
- As a result, computer scientists often write computer numbers in hexadecimal
- Hexadecimal is base-16
 - we only have 0 ... 9 to represent digits
 - So, hex uses A ... F to represent 10 ... 15

8

Hexad	lecimal N	Numbers			
Hex	Decimal	Binary	Hex	Decima	l Binary
0	0	0000	8	8	1000
1	1	0001	9	9	1001
2	2	0010	A	10	1010
3	3	0011	В	11	1011
4	4	0100	С	12	1100
5	5	0101	D	13	1101
6	6	0110	E	14	1110
7	7	0111	F	15	1111
Spring 2024		Sacramento St	ate - Cook - CSc 35		

9

ex Examp	ble			
The numb	oer <mark>7AC</mark> is			
16 ⁴	16 ³	16 ²	16¹	16 ⁰
65536	4096	256	16	1
0	0	7	Α	С
(7×256) +	(10×16) +	- (12×1) =	1964	

10

Bits and Bytes

- Everything in a *modern* computer is stored using combination of ones and zeros
- Bit is one binary digit
 - either 1 or 0
 - shorthand for a bit is <u>b</u>
- *Byte* is a group of 8 bits
 - e.g. 1101 0100
 - shorthand for a byte is <u>B</u>

How Text Is Stored Characters Processors rarely know what a "character" is, and instead store each as an integer Computer often store and . transmit textual data Ε Т Т Examples: In this case, each character is given a unique value punctuation • numerals 0 - 9 For instance Х Т letter • "A", could have the value of 1 Each of these symbols is called • "B" is 2 a character • "C" is 3, etc... 15 16

Character Sets

- ASCII
 - 7 bits 128 characters
 - · uses a full byte, one bit is not used
 - created in the 1967
- EBCDIC .
 - · Alternative system used by old IBM systems
 - · Not used much anymore

ASCII Chart Control characters																
	0	1	2	3	4		6	7	8	9	А	в	с	D	Е	F
0	NUL	SOH	stx	ЕТХ	EOT	ENQ	АСК	BEL	BS	нт	LF	VT	FF	CR	so	sı
1	DLE	DC1	DC2	DC3	DC4	NAK	SYN	ЕТВ	CAN	EM	SUB	ESC	FS	GS	RS	US
2	sp	1	"	#	\$	8	٤	•	()	*	+	,	-		1
3	0	1	2	3	4	5	6	7	8	9	:	;	<	=	>	?
4	6	A	в	с	D	E	F	G	н	I	J	ĸ	L	м	N	0
5	P	Q	R	s	т	υ	v	W	x	Y	z	1	Ν	1	^	-
6	`	a	b	с	d	е	f	g	h	i	j	k	1	m	n	0
7	P	đ	r	s	t	u	v	w	×	У	z	ł	Ι	}	~	DEL
Spring 2024							Sacran	nento State	- Codk - CS	6.35						

19

ASCII Codes

- Each character has a unique value
- The following is how "OMG" is stored in ASCII

	Decimal	Hex	Binary
0	79	4F	0100 1111
М	77	4D	0100 1101
G	71	47	0100 0111

20

ASCII Codes

- ASCII is laid out very logically
- Alphabetic characters (uppercase and lowercase) are 32 "code points" apart

	Decimal	Hex	Binary
Α	65	41	01000001
а	97	61	01100001

21

ASCII Codes

- 32¹ = 2⁵
- 1-bit difference between upper and lowercase letters
- Printers can easily convert between the two

	Decimal	Hex	Binary
Α	65	41	0100001
a	97	61	01100001

22

ASCII: Number Characters		
Character → Binary	0	0011 0000
Onaractor y Dinary	1	0011 0001
 clear the upper nibble 	2	0011 0010
 Bitwise And: 0000 1111 	3	0011 0011
	4	0011 0100
 Binary → Character 	5	0011 0101
 set the upper nibble to 	6	0011 0110
0011	7	0011 <mark>0111</mark>
Bitwise Or: 0011 0000	8	0011 1000
	9	0011 1001

ASCII: Number Characters

- ASCII code for 0 is 30h
- Notice that the actual value of a number character is stored in the lower nibble
- So, the characters 0 to 9 can be easily converted to their binary values

0	0011 0000	
1	0011 0001	
2	0011 0010	
3	0011 0011	
4	0011 0100	
5	0011 0101	
6	0011 0110	
7	0011 0111	
8	0011 1000	
9	0011 1001	
	22	

24

Times have changed...

- Computers have changed quite a bit since the 1960's
- As a result, most of these clever control characters are no longer needed
- Backspace, DEL, and numerous others are obsolete

26

Only Control Characters Still Used																	
		0	1	2	3	4	5	6	7	8	9	А	в	С	D	Е	F
	0		SOH	stx	ЕТХ	EOT	ENQ	АСК	BEL	BS		UF	VT	FF	CR	so	sı
	1	DLE	DC1	DC2	DC3	DC4	NAK	SYN	ETB	CAN	EM	SUB	ESC	FS	GS	RS	US
	2	sp	!	"	#	\$	8	٤	•	()	*	+	,	-		/
	3	0	1	2	3	4	5	6	7	8	9	:	;	<	=	>	?
	4	0	A	в	с	D	Е	F	G	H	I	J	ĸ	L	м	N	0
	5	P	Q	R	s	т	υ	v	w	x	¥	z	ſ	Ν	1	^	_
	6	`	а	b	с	d	е	f	g	h	i	j	k	1	m	n	0
	7	Р	q	r	s	t	u	v	w	x	У	z	{	Ι	}	~	DEL
Spring 2024								Sacran	rento State	- Cock - CS	k 35						

27

Unicode Character Set ASCII is only good for the United States Other languages need additional characters Multiple competing character sets were created Unicode was created to support every spoken language Developed in Mountain View, California

28

Unicode Character Set Originally used 16 bits that's over 65,000 characters! includes every character used in the World

- Expanded to 21 bits
 - 2 million characters!
 - now supports <u>every</u> character ever created
 - ... and emojis
- Unicode can be stored in different formats

Computer Memory

- Programs access and manipulate memory far more than you realize
- So, understanding it...
 - is vital to becoming a great assembly programmer
 - and understanding computer architecture

31

33

What is Memory?

- Memory is essentially an <u>enormous</u> array
- It is also, sometimes, referred to as *storage*
- It stores <u>both</u> running programs and their related data

32

010101010001001

34

35

