Processors ’%\'\\o Processors

7

AN

Part 2 What are they? Besides awesome!

Computer Processors Some Famous Computer Processors

The Central Processing Unit RCA 1802
(CPU) is the most complex part g

of a computer = Intel 8086
= Infact, it is the computer! = Zilog Z80
= It works far different from a = MOS 6502

high-level language

= Motorola 68000
= Thousands of processors have
been developed = ARM

Computer Processors Computer Processors

= But all share some basic

= Each processor functions properties and building
differently blocks...

= Each is designed for a = Computer hardware is divided
specific purpose — form into two "units”
follows function 1. Control Logic Unit

2. Execution Unit

Control Logic Unit (CLU)

= Control Logic Unit (CLU)
controls the processor

= Determines when instructions
can be executed
= Controls internal operations
« fetch & decode instructions
« invisible to running programs

o 2024 Sacraman St ok - 0525

Execution Unit

Execution Unit (EU) contains the hardware that
executes tasks (your programs)

Different in many processors

Modern processors often use multiple execution
units to execute instructions in parallel to improve
performance

Execution Unit — The ALU

= Arithmetic Logic Unitis part of
the Execution Unit and
performs all calculations and
comparisons

= Processor often contains
special hardware for integer
and floating point

Registers

Where the work is done

10

What —

exactly — is a register?

= In high level languages, you
put active data into variables

= However, it works quite
different on processors

= All computations are
performed using registers

X 4

A register is a location, on the
processor itself, that is used
to store temporary data

Think of it as a special global
"variable"

Some are accessible and
usable by a programs, but
many are hidden

11

12

What are registers used for?

= Registers are used to store anything the processor
needs to keep to track of

= Designed to be fast!

= Examples:
« the result of calculations
+ status information

» memory location of the running program
+ and much more...

General Purpose Registers

= General Purpose Registers (GPR) don't have a
specific purpose

= They are designed to be used by programs —
however they are needed

= Often, you must use registers to perform
calculations

13

Special Registers

14

Special Registers

= There are a number of registers that are used by
the Control Logic Unit and cannot be accessed by
your program

= This includes registers that control how memory
works, your program execution thread, and much
more.

= [nstruction Pointer (IP)
« also called the program counter
» keeps track of the address of your running program

« think it as the "line number" in your Java program — the
one is being executed

« it can be changed, but only indirectly (using control logic
— which we will cover later)

Sorg 2024 Sacramano St ok - 0525

15

Special Registers

= Status Register

+ contains Boolean information about the processors
current state

» we will use this later, indirectly

= Instruction Register (IR)
« stores the current instruction (being executed)
+ used internally and invisible to your program

sprng 2024 Sacrament S - Cok - 05235

16

Register Files

= All the related registers are
grouped into a register file

= Different processors access
and use their register files in
very different ways

= Sometimes registers are
implied or hardwired

Sorg 2024 Sacramano St ok - 0525

17

18

It's all just a bunch of bytes

Instructions

= You are used to writing
programs in high level
programming languages
= Examples:
. C#
« Java
* Python
 Visual Basic

|

19

High-Level Programming

= These are third-generation
languages

= They are designed to isolate
you from architecture of the
machine

= This layer of abstraction
makes programs "portable"
between systems

-

20

Instructions

= Processors do not have the
constructs you find in high-level
languages

= Examples:
» Blocks
« If Statements
« While Statements
.. etc

21

Instructions

= Processors can only perform
a series of simple tasks

= These are called instructions

= Examples:
+ add two values together

» copy a value
* jump to a memory location

-

22

Instructions

= These instructions are used
to create all logic needed by a
program

= We will cover how to do this
during the semester

-—

23

24

Processor Instruction Set Components of a Processor

)) Processor
= A pI’OCGSSOI"S instruction set

defines all the available Execution Unit

instructions ALU

= The instructions and their

Control Logic Unit

respective formats are very

different for each processor

25 26

= The Intel x64 is the main
The Intel X64 processor used by servers,
laptops, and desktops

= |t has evolved continuously
over a 40+ year period

It was simple at first...

27 28

The Original x86 What to call the processor

= First "x86" was the 8086
= Released in 1978

= Attributes:
+ 16-bit registers
+ 16 registers

+ could access of TMB of RAM (in
64KB blocks using a special .
"segment" register) previous

= The classic term "x86" refers
to the 32-bit and 16-bit
processor family

= With move to 64-bit, the term
"x64" is used to differentiate
the newest design from the

29 30

Original x86 Registers

. = The original x86 contained 16
Original x86 registers

Registers = 8 can be used by your
programs

/mT |' de\\

= The other 8 are used for
memory management

It was simple at first...

31 32

Original x86 Registers Original x86 Registers

= 8 Registers can be used by your programs

= The x86 processor has evolved continuously over « Four General Purpose: AX, BX, CX, DX
the last 4 decades « Four pointer index: SI, DI, BP, SP

= |t first jumped to 32-bit, and then, again, to 64-bit = The remaining 8 are restricted

= The result is many of the registers have strange * Six segment: CS, DS, ES, FS, GS, 88
names + One instruction pointer: IP

+ One status register — used in computations

Sprng 2024 Sacraments S - Cok - 05235 B Sorg 2024 Sacramano St ok - 0525 =

33 34

Original General-Purpose Registers Original General-Purpose Registers

= However, back then (and now ~ The first and second byte ~
too) it is very useful to store can be used separately or
8-bit values o used together o

= So, Intel chopped 4 of the = Naming convention
registers in half « high byte has the suffix "H"

= These registers have generic o + low byte has the suffix "L" N
names of A, B, C, D « for both bytes, the suffix is "X"

35 36

Original General-Purpose Registers

Last the 4 Registers

= This essentially doubled the
number of registers
= So, there are:
- four 16-bit registers or
+ eight 8-bit registers

« ...and any combination you can
think off

AL

Hg Ix E I;
- -le - -

——
——
——

= The remaining 4 registers were not
cut in half

= Used for storing indexes (for
arrays) and pointers
= Their purpose
» DI —destination index
« Sl - source index
« BP —base pointer
« SP —stack pointer

37

Original 16-Bit Registers

o e ——
T | |

Sorg 2028 Sacraments S - Cok - 05235

38

Evolution to 64-

Bit Registers

This is going to hurt...

39

Evolution to 32-bit

= When the x86 moved to 32-
bit era, Intel expanded the
registers to 32-bit

» the 16-bit ones still exist

« they have the prefix "e" for
extended

= New instructions were added
to use them

40

Original Registers

A

Hl

Ix Ix Ix I
-2 - - -

BL

oL

Hn Hn Hm

41

42

Expansion to 32-bit

Original Registers

Expansion to 32-bit

| —
| —
| —
\

Evolution to 64-bit

= At this point, Intel had decided to
abandon the x86 in lieu of their
new Itanium Processor

= The Itanium was a radically

different design and was
completely incompatible

= Advanced Micro Devices (AMD),

to Intel's chagrin, decided to —
once again — extend the x86

Sormg 2024 Sacramano St ok - 0525

45

Evolution to 64-bit

= Registers were extended again
+ 64-bit registers have the prefix "r"
+ 8 additional registers were added

« also, it is now possible to get 8-bit
values from all registers
(hardware is more consistent!)

= Some old, archaic, features
were dropped

46

Evolution to 64-bit

= The AMD-64 was a huge

commercial success

= The Itanium was a

commercial failure

= Intel, dropped the Itanium and

started making 64-bit x86
using AMD's design

47

48

Expansion to 64-bit Expansion to 64-bit

Expansion to 64-bit Expansion to 64-bit

New 64-bit Registers: R8... 64-Bit Register Table
Register 8-bit High 8-bit Low
: rex ecx cx ch cl
. rdx edx dx dh d1
rsi esi si sil
rdi edi di dil
Ris rbp ebp bp bpl
[[Rtsw —|
| | Riso rsp esp sp spl

53 54

64-Bit Register Table

Register 32-bit 16-bit 8-bit High 8-bit Low
r8 r8d r8w r8b
r9 r9d 9w 9%

rlo rlod rlow rl0b
rll rlld rllw rllb
rl2 rlad rl2w rl2b
rl3 rl3d rl3w rl3b
rl4 rldd rldw rldb
rl5 rl5d rl5w rl5b

¥

&

Basic Intel x86
Instructions

ihs

-
A W

Feel the pow-wah of the x86!

55

Basic Intel x86 Instructions

= Each x86 instruction can
have up to 2 operands

= QOperands in x86 instructions
are very versatile

= Each operand can be either a
memory address, register or
an immediate value

-

56

Types of Operands

= Registers
= Address in memory
= Register pointing to a memory address

= |Immediate

57

Intel x86 Instruction Limits

58

Intel x86 Instruction Limits

= There are some limitations...

= Some instructions must use
an immediate

= Some instructions require a
specific register to perform
calculations

= A register must always be involved
» processors use registers for all activity
» both operands cannot access memory at the same time

« the processor has to have it at some point!

= Also, obviously, the receiving field cannot be an
immediate value

59

60

10

Instruction: Move

= The Intel Move Instruction combines transfer, load
and store instructions under one name

= ... well, that's something the assembler does for us
— but, we'll cover that soon

= "Move" is a tad confusing — it copies data

Instruction: Move

Immediate, Register,
Memory

MOV destination, source

Register, Memory

61

Example: Move immediate

Source is a immediate constant

A

62

Example: Transfer

MOV xbx, rax
rbx = rax;

Example: Load

"total" is memory location

MOV rax, total

Destination is rax

Example: Store

MOV counter, rax

Memory location named 'Counter’

65

66

11

Example: "A" Register

So many options!

mov al, 42

#low byte
#high byte
#both bytes

mov ah, 13

mov ax, 1947

Instruction: Add & Subtract

The Add and Subtract
instructions take two
operands and store the result
in the first operand

This is the same as the +=
and —= operators used in
Visual Basic .NET, C, C++,
Java, etc...

67

Instruction: Add Example: Move register to memory

Immediate, Register, Memory

ADD target , value

Register, Memory

68

Move memory into rax

MOV rax, counter

ADD rax, 2

69

Instruction: And & Or Instruction: Logical And

The Bitwise And & Bitwise Or
instructions take two
operands and stores the
result in the second operand

This is the same as the ~=
and | = operators used in C,
C++, Java, etc...

70

Immediate, Register, Memory

AND target , value

Register, Memory

71

72

12

Example: Logical Or Call Instruction

= The Call Instruction causes the processor to start
running instructions at a specified memory location

#Convert 5 to ASCII 'S5’ (a subroutine)
MOV rax, 5 = Subroutines are analogous to the functions you
OR rax, 0x30 wrote in Java

4

= Once it completes, execution returns from the
007 00%0 | subroutine and continues after the call

73 74

Call Instruction Example: Print an integer

#Using the CSC35 library

CALL address

MOV rax, 1846

CALL PrintInteger This name is an
Usually a label - a constant address
that holds an address

o Su - Conk -G53 s Sormg 2024

75 76

13

