
1

Processors

Part 2 What are they? Besides awesome!

Processors

Computer Processors

Spring 2024 Sacramento State - Cook - CSc 35 3

 The Central Processing Unit
(CPU) is the most complex part
of a computer

 In fact, it is the computer!

 It works far different from a
high-level language

 Thousands of processors have
been developed

Some Famous Computer Processors

Spring 2024 Sacramento State - Cook - CSc 35 4

 RCA 1802

 Intel 8086

 Zilog Z80

 MOS 6502

 Motorola 68000

 ARM

Computer Processors

Spring 2024 Sacramento State - Cook - CSc 35 5

 Each processor functions

differently

 Each is designed for a

specific purpose – form

follows function

Computer Processors

Spring 2024 Sacramento State - Cook - CSc 35 6

 But all share some basic

properties and building

blocks…

 Computer hardware is divided

into two "units"

1. Control Logic Unit

2. Execution Unit

1 2

3 4

5 6

2

 Control Logic Unit (CLU)
controls the processor

 Determines when instructions
can be executed

 Controls internal operations

• fetch & decode instructions

• invisible to running programs

Control Logic Unit (CLU)

Spring 2024 Sacramento State - Cook - CSc 35 7

Execution Unit

 Execution Unit (EU) contains the hardware that

executes tasks (your programs)

 Different in many processors

 Modern processors often use multiple execution
units to execute instructions in parallel to improve

performance

Spring 2024 Sacramento State - Cook - CSc 35 8

 Arithmetic Logic Unit is part of

the Execution Unit and

performs all calculations and
comparisons

 Processor often contains
special hardware for integer

and floating point

Execution Unit – The ALU

Spring 2024 Sacramento State - Cook - CSc 35 9

Where the work is done

Registers

Registers

Spring 2024 Sacramento State - Cook - CSc 35 11

 In high level languages, you

put active data into variables

 However, it works quite
different on processors

 All computations are

performed using registers

What – exactly – is a register?

Spring 2024 Sacramento State - Cook - CSc 35 12

 A register is a location, on the
processor itself, that is used
to store temporary data

 Think of it as a special global
"variable"

 Some are accessible and
usable by a programs, but
many are hidden

7 8

9 10

11 12

3

What are registers used for?

 Registers are used to store anything the processor
needs to keep to track of

 Designed to be fast!

 Examples:

• the result of calculations

• status information

• memory location of the running program

• and much more…

Spring 2024 Sacramento State - Cook - CSc 35 13

General Purpose Registers

 General Purpose Registers (GPR) don't have a

specific purpose

 They are designed to be used by programs –
however they are needed

 Often, you must use registers to perform

calculations

Spring 2024 Sacramento State - Cook - CSc 35 14

 There are a number of registers that are used by

the Control Logic Unit and cannot be accessed by

your program

 This includes registers that control how memory

works, your program execution thread, and much
more.

Special Registers

Spring 2024 Sacramento State - Cook - CSc 35 15

 Instruction Pointer (IP)

• also called the program counter

• keeps track of the address of your running program

• think it as the "line number" in your Java program – the

one is being executed

• it can be changed, but only indirectly (using control logic

– which we will cover later)

Special Registers

Spring 2024 Sacramento State - Cook - CSc 35 16

 Status Register

• contains Boolean information about the processors

current state

• we will use this later, indirectly

 Instruction Register (IR)

• stores the current instruction (being executed)

• used internally and invisible to your program

Special Registers

Spring 2024 Sacramento State - Cook - CSc 35 17

 All the related registers are

grouped into a register file

 Different processors access

and use their register files in

very different ways

 Sometimes registers are

implied or hardwired

Register Files

Spring 2024 Sacramento State - Cook - CSc 35 18

13 14

15 16

17 18

4

Instructions

It's all just a bunch of bytes

Instructions

Spring 2024 Sacramento State - Cook - CSc 35 20

 You are used to writing
programs in high level
programming languages

 Examples:

• C#

• Java

• Python

• Visual Basic

High-Level Programming

Spring 2024 Sacramento State - Cook - CSc 35 21

 These are third-generation
languages

 They are designed to isolate
you from architecture of the
machine

 This layer of abstraction
makes programs "portable"
between systems

Instructions

Spring 2024 Sacramento State - Cook - CSc 35 22

 Processors do not have the
constructs you find in high-level
languages

 Examples:

• Blocks

• If Statements

• While Statements

• … etc

Instructions

Spring 2024 Sacramento State - Cook - CSc 35 23

 Processors can only perform
a series of simple tasks

 These are called instructions

 Examples:

• add two values together

• copy a value

• jump to a memory location

Instructions

Spring 2024 Sacramento State - Cook - CSc 35 24

 These instructions are used

to create all logic needed by a

program

 We will cover how to do this

during the semester

19 20

21 22

23 24

5

Processor Instruction Set

Spring 2024 Sacramento State - Cook - CSc 35 25

 A processor's instruction set

defines all the available

instructions

 The instructions and their

respective formats are very
different for each processor

Components of a Processor

Spring 2024 Sacramento State - Cook - CSc 35 26

The Intel x64

It was simple at first…

 The Intel x64 is the main

processor used by servers,

laptops, and desktops

 It has evolved continuously

over a 40+ year period

The Intel x64

Spring 2024 Sacramento State - Cook - CSc 35 28

 First "x86" was the 8086

 Released in 1978

 Attributes:

• 16-bit registers

• 16 registers

• could access of 1MB of RAM (in
64KB blocks using a special
"segment" register)

The Original x86

Spring 2024 Sacramento State - Cook - CSc 35 29

 The classic term "x86" refers

to the 32-bit and 16-bit

processor family

 With move to 64-bit, the term
"x64" is used to differentiate
the newest design from the

previous

What to call the processor

Spring 2024 Sacramento State - Cook - CSc 35 30

25 26

27 28

29 30

6

It was simple at first…

Original x86

Registers

Original x86 Registers

Spring 2024 Sacramento State - Cook - CSc 35 32

 The original x86 contained 16

registers

 8 can be used by your
programs

 The other 8 are used for

memory management

 The x86 processor has evolved continuously over

the last 4 decades

 It first jumped to 32-bit, and then, again, to 64-bit

 The result is many of the registers have strange
names

Original x86 Registers

Spring 2024 Sacramento State - Cook - CSc 35 33

 8 Registers can be used by your programs

• Four General Purpose: AX, BX, CX, DX

• Four pointer index: SI, DI, BP, SP

 The remaining 8 are restricted

• Six segment: CS, DS, ES, FS, GS, SS

• One instruction pointer: IP

• One status register – used in computations

Original x86 Registers

Spring 2024 Sacramento State - Cook - CSc 35 34

 However, back then (and now

too) it is very useful to store

8-bit values

 So, Intel chopped 4 of the

registers in half

 These registers have generic

names of A, B, C, D

Original General-Purpose Registers

Spring 2024 Sacramento State - Cook - CSc 35 35

 The first and second byte

can be used separately or

used together

 Naming convention

• high byte has the suffix "H"

• low byte has the suffix "L"

• for both bytes, the suffix is "X"

Original General-Purpose Registers

Spring 2024 Sacramento State - Cook - CSc 35 36

31 32

33 34

35 36

7

 This essentially doubled the

number of registers

 So, there are:

• four 16-bit registers or

• eight 8-bit registers

• …and any combination you can

think off

Original General-Purpose Registers

Spring 2024 Sacramento State - Cook - CSc 35 37

 The remaining 4 registers were not
cut in half

 Used for storing indexes (for
arrays) and pointers

 Their purpose

• DI – destination index

• SI – source index

• BP – base pointer

• SP – stack pointer

Last the 4 Registers

Spring 2024 Sacramento State - Cook - CSc 35 38

Original 16-Bit Registers

Spring 2024 Sacramento State - Cook - CSc 35 39

This is going to hurt…

Evolution to 64-

Bit Registers

 When the x86 moved to 32-
bit era, Intel expanded the
registers to 32-bit

• the 16-bit ones still exist

• they have the prefix "e" for
extended

 New instructions were added
to use them

Evolution to 32-bit

Spring 2024 Sacramento State - Cook - CSc 35 41

Original Registers

Spring 2024 Sacramento State - Cook - CSc 35 42

37 38

39 40

41 42

8

Expansion to 32-bit

Spring 2024 Sacramento State - Cook - CSc 35 43

Original Registers

Spring 2024 Sacramento State - Cook - CSc 35 44

Expansion to 32-bit

Spring 2024 Sacramento State - Cook - CSc 35 45

Evolution to 64-bit

Spring 2024 Sacramento State - Cook - CSc 35 46

 At this point, Intel had decided to
abandon the x86 in lieu of their
new Itanium Processor

 The Itanium was a radically
different design and was
completely incompatible

 Advanced Micro Devices (AMD),
to Intel's chagrin, decided to –
once again – extend the x86

Evolution to 64-bit

Spring 2024 Sacramento State - Cook - CSc 35 47

 Registers were extended again

• 64-bit registers have the prefix "r"

• 8 additional registers were added

• also, it is now possible to get 8-bit
values from all registers
(hardware is more consistent!)

 Some old, archaic, features
were dropped

Evolution to 64-bit

Spring 2024 Sacramento State - Cook - CSc 35 48

 The AMD-64 was a huge

commercial success

 The Itanium was a

commercial failure

 Intel, dropped the Itanium and

started making 64-bit x86

using AMD's design

43 44

45 46

47 48

9

Expansion to 64-bit

Spring 2024 Sacramento State - Cook - CSc 35 49

Expansion to 64-bit

Spring 2024 Sacramento State - Cook - CSc 35 50

Expansion to 64-bit

Spring 2024 Sacramento State - Cook - CSc 35 51

Expansion to 64-bit

Spring 2024 Sacramento State - Cook - CSc 35 52

New 64-bit Registers: R8…R15

Spring 2024 Sacramento State - Cook - CSc 35 53

8-bit Low8-bit High16-bit32-bitRegister

alahaxeaxrax

blbhbxebxrbx

clchcxecxrcx

dldhdxedxrdx

silsiesirsi

dildiedirdi

bplbpebprbp

splspesprsp

Spring 2024 Sacramento State - Cook - CSc 35 54

64-Bit Register Table

49 50

51 52

53 54

10

8-bit Low8-bit High16-bit32-bitRegister

r8br8wr8dr8

r9br9wr9dr9

r10br10wr10dr10

r11br11wr11dr11

r12br12wr12dr12

r13br13wr13dr13

r14br14wr14dr14

r15br15wr15dr15

Spring 2024 Sacramento State - Cook - CSc 35 55

64-Bit Register Table

Feel the pow-wah of the x86!

Basic Intel x86

Instructions

Basic Intel x86 Instructions

Spring 2024 Sacramento State - Cook - CSc 35 57

 Each x86 instruction can

have up to 2 operands

 Operands in x86 instructions

are very versatile

 Each operand can be either a

memory address, register or

an immediate value

 Registers

 Address in memory

 Register pointing to a memory address

 Immediate

Types of Operands

Spring 2024 Sacramento State - Cook - CSc 35 58

 There are some limitations…

 Some instructions must use
an immediate

 Some instructions require a
specific register to perform

calculations

Intel x86 Instruction Limits

Spring 2024 Sacramento State - Cook - CSc 35 59

 A register must always be involved

• processors use registers for all activity

• both operands cannot access memory at the same time

• the processor has to have it at some point!

 Also, obviously, the receiving field cannot be an
immediate value

Intel x86 Instruction Limits

Spring 2024 Sacramento State - Cook - CSc 35 60

55 56

57 58

59 60

11

 The Intel Move Instruction combines transfer, load

and store instructions under one name

 … well, that's something the assembler does for us

– but, we'll cover that soon

 "Move" is a tad confusing – it copies data

Instruction: Move

Spring 2024 Sacramento State - Cook - CSc 35 61

MOV destination, source

Instruction: Move

Immediate, Register,

Memory

Register, Memory

Spring 2024 Sacramento State - Cook - CSc 35 62

MOV rax, 42

Example: Move immediate

Source is a immediate constant

Destination is rax

Same as Java
rax = 42;

Spring 2024 Sacramento State - Cook - CSc 35 63

MOV rbx, rax

Example: Transfer

Source is rax

Destination is rbx

Same as Java
rbx = rax;

Spring 2024 Sacramento State - Cook - CSc 35 64

MOV rax, total

Example: Load

"total" is memory location

Destination is rax

Spring 2024 Sacramento State - Cook - CSc 35 65

MOV counter, rax

Example: Store

Source is rax

Memory location named 'Counter'

Spring 2024 Sacramento State - Cook - CSc 35 66

61 62

63 64

65 66

12

So many options!

mov al, 42 #low byte

mov ah, 13 #high byte

mov ax, 1947 #both bytes

Example: "A" Register

Spring 2024 Sacramento State - Cook - CSc 35 67

 The Add and Subtract
instructions take two
operands and store the result
in the first operand

 This is the same as the +=
and -= operators used in
Visual Basic .NET, C, C++,
Java, etc…

Instruction: Add & Subtract

Spring 2024 Sacramento State - Cook - CSc 35 68

ADD target , value

Instruction: Add

Immediate, Register, Memory

Register, Memory

Spring 2024 Sacramento State - Cook - CSc 35 69

MOV rax, counter

ADD rax, 2

Example: Move register to memory

Move memory into rax

Same as Java
rax += 2;

Spring 2024 Sacramento State - Cook - CSc 35 70

 The Bitwise And & Bitwise Or

instructions take two

operands and stores the
result in the second operand

 This is the same as the ^=
and|= operators used in C,

C++, Java, etc…

Instruction: And & Or

Spring 2024 Sacramento State - Cook - CSc 35 71

AND target , value

Instruction: Logical And

Immediate, Register, Memory

Register, Memory

Spring 2024 Sacramento State - Cook - CSc 35 72

67 68

69 70

71 72

13

#Convert 5 to ASCII '5'

MOV rax, 5

OR rax, 0x30

Example: Logical Or

0011 0000

Spring 2024 Sacramento State - Cook - CSc 35 73

 The Call Instruction causes the processor to start

running instructions at a specified memory location

(a subroutine)

 Subroutines are analogous to the functions you

wrote in Java

 Once it completes, execution returns from the

subroutine and continues after the call

Call Instruction

Spring 2024 Sacramento State - Cook - CSc 35 74

CALL address

Call Instruction

Usually a label – a constant

that holds an address

Spring 2024 Sacramento State - Cook - CSc 35 75

#Using the CSC35 library

MOV rax, 1846

CALL PrintInteger

Example: Print an integer

This name is an

address

Spring 2024 Sacramento State - Cook - CSc 35 76

73 74

75 76

