
1

Processors

Part 2 What are they? Besides awesome!

Processors

Computer Processors

Spring 2024 Sacramento State - Cook - CSc 35 3

 The Central Processing Unit
(CPU) is the most complex part
of a computer

 In fact, it is the computer!

 It works far different from a
high-level language

 Thousands of processors have
been developed

Some Famous Computer Processors

Spring 2024 Sacramento State - Cook - CSc 35 4

 RCA 1802

 Intel 8086

 Zilog Z80

 MOS 6502

 Motorola 68000

 ARM

Computer Processors

Spring 2024 Sacramento State - Cook - CSc 35 5

 Each processor functions

differently

 Each is designed for a

specific purpose – form

follows function

Computer Processors

Spring 2024 Sacramento State - Cook - CSc 35 6

 But all share some basic

properties and building

blocks…

 Computer hardware is divided

into two "units"

1. Control Logic Unit

2. Execution Unit

1 2

3 4

5 6

2

 Control Logic Unit (CLU)
controls the processor

 Determines when instructions
can be executed

 Controls internal operations

• fetch & decode instructions

• invisible to running programs

Control Logic Unit (CLU)

Spring 2024 Sacramento State - Cook - CSc 35 7

Execution Unit

 Execution Unit (EU) contains the hardware that

executes tasks (your programs)

 Different in many processors

 Modern processors often use multiple execution
units to execute instructions in parallel to improve

performance

Spring 2024 Sacramento State - Cook - CSc 35 8

 Arithmetic Logic Unit is part of

the Execution Unit and

performs all calculations and
comparisons

 Processor often contains
special hardware for integer

and floating point

Execution Unit – The ALU

Spring 2024 Sacramento State - Cook - CSc 35 9

Where the work is done

Registers

Registers

Spring 2024 Sacramento State - Cook - CSc 35 11

 In high level languages, you

put active data into variables

 However, it works quite
different on processors

 All computations are

performed using registers

What – exactly – is a register?

Spring 2024 Sacramento State - Cook - CSc 35 12

 A register is a location, on the
processor itself, that is used
to store temporary data

 Think of it as a special global
"variable"

 Some are accessible and
usable by a programs, but
many are hidden

7 8

9 10

11 12

3

What are registers used for?

 Registers are used to store anything the processor
needs to keep to track of

 Designed to be fast!

 Examples:

• the result of calculations

• status information

• memory location of the running program

• and much more…

Spring 2024 Sacramento State - Cook - CSc 35 13

General Purpose Registers

 General Purpose Registers (GPR) don't have a

specific purpose

 They are designed to be used by programs –
however they are needed

 Often, you must use registers to perform

calculations

Spring 2024 Sacramento State - Cook - CSc 35 14

 There are a number of registers that are used by

the Control Logic Unit and cannot be accessed by

your program

 This includes registers that control how memory

works, your program execution thread, and much
more.

Special Registers

Spring 2024 Sacramento State - Cook - CSc 35 15

 Instruction Pointer (IP)

• also called the program counter

• keeps track of the address of your running program

• think it as the "line number" in your Java program – the

one is being executed

• it can be changed, but only indirectly (using control logic

– which we will cover later)

Special Registers

Spring 2024 Sacramento State - Cook - CSc 35 16

 Status Register

• contains Boolean information about the processors

current state

• we will use this later, indirectly

 Instruction Register (IR)

• stores the current instruction (being executed)

• used internally and invisible to your program

Special Registers

Spring 2024 Sacramento State - Cook - CSc 35 17

 All the related registers are

grouped into a register file

 Different processors access

and use their register files in

very different ways

 Sometimes registers are

implied or hardwired

Register Files

Spring 2024 Sacramento State - Cook - CSc 35 18

13 14

15 16

17 18

4

Instructions

It's all just a bunch of bytes

Instructions

Spring 2024 Sacramento State - Cook - CSc 35 20

 You are used to writing
programs in high level
programming languages

 Examples:

• C#

• Java

• Python

• Visual Basic

High-Level Programming

Spring 2024 Sacramento State - Cook - CSc 35 21

 These are third-generation
languages

 They are designed to isolate
you from architecture of the
machine

 This layer of abstraction
makes programs "portable"
between systems

Instructions

Spring 2024 Sacramento State - Cook - CSc 35 22

 Processors do not have the
constructs you find in high-level
languages

 Examples:

• Blocks

• If Statements

• While Statements

• … etc

Instructions

Spring 2024 Sacramento State - Cook - CSc 35 23

 Processors can only perform
a series of simple tasks

 These are called instructions

 Examples:

• add two values together

• copy a value

• jump to a memory location

Instructions

Spring 2024 Sacramento State - Cook - CSc 35 24

 These instructions are used

to create all logic needed by a

program

 We will cover how to do this

during the semester

19 20

21 22

23 24

5

Processor Instruction Set

Spring 2024 Sacramento State - Cook - CSc 35 25

 A processor's instruction set

defines all the available

instructions

 The instructions and their

respective formats are very
different for each processor

Components of a Processor

Spring 2024 Sacramento State - Cook - CSc 35 26

The Intel x64

It was simple at first…

 The Intel x64 is the main

processor used by servers,

laptops, and desktops

 It has evolved continuously

over a 40+ year period

The Intel x64

Spring 2024 Sacramento State - Cook - CSc 35 28

 First "x86" was the 8086

 Released in 1978

 Attributes:

• 16-bit registers

• 16 registers

• could access of 1MB of RAM (in
64KB blocks using a special
"segment" register)

The Original x86

Spring 2024 Sacramento State - Cook - CSc 35 29

 The classic term "x86" refers

to the 32-bit and 16-bit

processor family

 With move to 64-bit, the term
"x64" is used to differentiate
the newest design from the

previous

What to call the processor

Spring 2024 Sacramento State - Cook - CSc 35 30

25 26

27 28

29 30

6

It was simple at first…

Original x86

Registers

Original x86 Registers

Spring 2024 Sacramento State - Cook - CSc 35 32

 The original x86 contained 16

registers

 8 can be used by your
programs

 The other 8 are used for

memory management

 The x86 processor has evolved continuously over

the last 4 decades

 It first jumped to 32-bit, and then, again, to 64-bit

 The result is many of the registers have strange
names

Original x86 Registers

Spring 2024 Sacramento State - Cook - CSc 35 33

 8 Registers can be used by your programs

• Four General Purpose: AX, BX, CX, DX

• Four pointer index: SI, DI, BP, SP

 The remaining 8 are restricted

• Six segment: CS, DS, ES, FS, GS, SS

• One instruction pointer: IP

• One status register – used in computations

Original x86 Registers

Spring 2024 Sacramento State - Cook - CSc 35 34

 However, back then (and now

too) it is very useful to store

8-bit values

 So, Intel chopped 4 of the

registers in half

 These registers have generic

names of A, B, C, D

Original General-Purpose Registers

Spring 2024 Sacramento State - Cook - CSc 35 35

 The first and second byte

can be used separately or

used together

 Naming convention

• high byte has the suffix "H"

• low byte has the suffix "L"

• for both bytes, the suffix is "X"

Original General-Purpose Registers

Spring 2024 Sacramento State - Cook - CSc 35 36

31 32

33 34

35 36

7

 This essentially doubled the

number of registers

 So, there are:

• four 16-bit registers or

• eight 8-bit registers

• …and any combination you can

think off

Original General-Purpose Registers

Spring 2024 Sacramento State - Cook - CSc 35 37

 The remaining 4 registers were not
cut in half

 Used for storing indexes (for
arrays) and pointers

 Their purpose

• DI – destination index

• SI – source index

• BP – base pointer

• SP – stack pointer

Last the 4 Registers

Spring 2024 Sacramento State - Cook - CSc 35 38

Original 16-Bit Registers

Spring 2024 Sacramento State - Cook - CSc 35 39

This is going to hurt…

Evolution to 64-

Bit Registers

 When the x86 moved to 32-
bit era, Intel expanded the
registers to 32-bit

• the 16-bit ones still exist

• they have the prefix "e" for
extended

 New instructions were added
to use them

Evolution to 32-bit

Spring 2024 Sacramento State - Cook - CSc 35 41

Original Registers

Spring 2024 Sacramento State - Cook - CSc 35 42

37 38

39 40

41 42

8

Expansion to 32-bit

Spring 2024 Sacramento State - Cook - CSc 35 43

Original Registers

Spring 2024 Sacramento State - Cook - CSc 35 44

Expansion to 32-bit

Spring 2024 Sacramento State - Cook - CSc 35 45

Evolution to 64-bit

Spring 2024 Sacramento State - Cook - CSc 35 46

 At this point, Intel had decided to
abandon the x86 in lieu of their
new Itanium Processor

 The Itanium was a radically
different design and was
completely incompatible

 Advanced Micro Devices (AMD),
to Intel's chagrin, decided to –
once again – extend the x86

Evolution to 64-bit

Spring 2024 Sacramento State - Cook - CSc 35 47

 Registers were extended again

• 64-bit registers have the prefix "r"

• 8 additional registers were added

• also, it is now possible to get 8-bit
values from all registers
(hardware is more consistent!)

 Some old, archaic, features
were dropped

Evolution to 64-bit

Spring 2024 Sacramento State - Cook - CSc 35 48

 The AMD-64 was a huge

commercial success

 The Itanium was a

commercial failure

 Intel, dropped the Itanium and

started making 64-bit x86

using AMD's design

43 44

45 46

47 48

9

Expansion to 64-bit

Spring 2024 Sacramento State - Cook - CSc 35 49

Expansion to 64-bit

Spring 2024 Sacramento State - Cook - CSc 35 50

Expansion to 64-bit

Spring 2024 Sacramento State - Cook - CSc 35 51

Expansion to 64-bit

Spring 2024 Sacramento State - Cook - CSc 35 52

New 64-bit Registers: R8…R15

Spring 2024 Sacramento State - Cook - CSc 35 53

8-bit Low8-bit High16-bit32-bitRegister

alahaxeaxrax

blbhbxebxrbx

clchcxecxrcx

dldhdxedxrdx

silsiesirsi

dildiedirdi

bplbpebprbp

splspesprsp

Spring 2024 Sacramento State - Cook - CSc 35 54

64-Bit Register Table

49 50

51 52

53 54

10

8-bit Low8-bit High16-bit32-bitRegister

r8br8wr8dr8

r9br9wr9dr9

r10br10wr10dr10

r11br11wr11dr11

r12br12wr12dr12

r13br13wr13dr13

r14br14wr14dr14

r15br15wr15dr15

Spring 2024 Sacramento State - Cook - CSc 35 55

64-Bit Register Table

Feel the pow-wah of the x86!

Basic Intel x86

Instructions

Basic Intel x86 Instructions

Spring 2024 Sacramento State - Cook - CSc 35 57

 Each x86 instruction can

have up to 2 operands

 Operands in x86 instructions

are very versatile

 Each operand can be either a

memory address, register or

an immediate value

 Registers

 Address in memory

 Register pointing to a memory address

 Immediate

Types of Operands

Spring 2024 Sacramento State - Cook - CSc 35 58

 There are some limitations…

 Some instructions must use
an immediate

 Some instructions require a
specific register to perform

calculations

Intel x86 Instruction Limits

Spring 2024 Sacramento State - Cook - CSc 35 59

 A register must always be involved

• processors use registers for all activity

• both operands cannot access memory at the same time

• the processor has to have it at some point!

 Also, obviously, the receiving field cannot be an
immediate value

Intel x86 Instruction Limits

Spring 2024 Sacramento State - Cook - CSc 35 60

55 56

57 58

59 60

11

 The Intel Move Instruction combines transfer, load

and store instructions under one name

 … well, that's something the assembler does for us

– but, we'll cover that soon

 "Move" is a tad confusing – it copies data

Instruction: Move

Spring 2024 Sacramento State - Cook - CSc 35 61

MOV destination, source

Instruction: Move

Immediate, Register,

Memory

Register, Memory

Spring 2024 Sacramento State - Cook - CSc 35 62

MOV rax, 42

Example: Move immediate

Source is a immediate constant

Destination is rax

Same as Java
rax = 42;

Spring 2024 Sacramento State - Cook - CSc 35 63

MOV rbx, rax

Example: Transfer

Source is rax

Destination is rbx

Same as Java
rbx = rax;

Spring 2024 Sacramento State - Cook - CSc 35 64

MOV rax, total

Example: Load

"total" is memory location

Destination is rax

Spring 2024 Sacramento State - Cook - CSc 35 65

MOV counter, rax

Example: Store

Source is rax

Memory location named 'Counter'

Spring 2024 Sacramento State - Cook - CSc 35 66

61 62

63 64

65 66

12

So many options!

mov al, 42 #low byte

mov ah, 13 #high byte

mov ax, 1947 #both bytes

Example: "A" Register

Spring 2024 Sacramento State - Cook - CSc 35 67

 The Add and Subtract
instructions take two
operands and store the result
in the first operand

 This is the same as the +=
and -= operators used in
Visual Basic .NET, C, C++,
Java, etc…

Instruction: Add & Subtract

Spring 2024 Sacramento State - Cook - CSc 35 68

ADD target , value

Instruction: Add

Immediate, Register, Memory

Register, Memory

Spring 2024 Sacramento State - Cook - CSc 35 69

MOV rax, counter

ADD rax, 2

Example: Move register to memory

Move memory into rax

Same as Java
rax += 2;

Spring 2024 Sacramento State - Cook - CSc 35 70

 The Bitwise And & Bitwise Or

instructions take two

operands and stores the
result in the second operand

 This is the same as the ^=
and|= operators used in C,

C++, Java, etc…

Instruction: And & Or

Spring 2024 Sacramento State - Cook - CSc 35 71

AND target , value

Instruction: Logical And

Immediate, Register, Memory

Register, Memory

Spring 2024 Sacramento State - Cook - CSc 35 72

67 68

69 70

71 72

13

#Convert 5 to ASCII '5'

MOV rax, 5

OR rax, 0x30

Example: Logical Or

0011 0000

Spring 2024 Sacramento State - Cook - CSc 35 73

 The Call Instruction causes the processor to start

running instructions at a specified memory location

(a subroutine)

 Subroutines are analogous to the functions you

wrote in Java

 Once it completes, execution returns from the

subroutine and continues after the call

Call Instruction

Spring 2024 Sacramento State - Cook - CSc 35 74

CALL address

Call Instruction

Usually a label – a constant

that holds an address

Spring 2024 Sacramento State - Cook - CSc 35 75

#Using the CSC35 library

MOV rax, 1846

CALL PrintInteger

Example: Print an integer

This name is an

address

Spring 2024 Sacramento State - Cook - CSc 35 76

73 74

75 76

