
1

Programs

Part 3 Programs, Coding, and Nerds… oh my!

Compilers,
Assemblers &
Linkers

Compilers & Assemblers

Spring 2024 Sacramento State - Cook - CSc 35 3

 When you hit "compile" or
"run" (e.g. in your Java IDE),
many actions take place
"behind the scenes"

 You are usually only aware of
the work that the parser does

Development Process

1. Write program in high-level language

2. Compile program into assembly

3. Assemble program into objects

4. Link multiple objects programs into one executable

5. Load executable into memory

6. Execute it

Spring 2024 Sacramento State - Cook - CSc 35 4

From Abstract to Machine

High-Level Language
3rd Generation

Assembly
2nd Generation

Machine Code
1st Generation

Spring 2024 Sacramento State - Cook - CSc 35 5

Compiler

Assembler

 Convert programs from high-level languages (such
as C or C++) into assembly language

 Some create machine-code directly…

 Interpreters, however…

• never compile code

• Instead, they run parts of their own program

Compiler

Spring 2024 Sacramento State - Cook - CSc 35 6

1 2

3 4

5 6

2

Compilers: 3rd → 2nd Generation

mov r8, 1846

add r8, 42

mov r9, 3

mov [a+r9*8], r8

x = 1846;

x += 42;

n = 3;

a[n] = x;

Spring 2024 Sacramento State - Cook - CSc 35 7

Compiler

Assembler

 Converts assembly into the binary representation
used by the processor

 Often the result is an object file

• usually not executable - yet

• contains computer instructions and information on how
to "link" into other executable units

• file may include: relocation data, unresolved labels,
debugging data

Spring 2024 Sacramento State - Cook - CSc 35 8

Assembler: 2nd → 1st Generation

Spring 2024 Sacramento State - Cook - CSc 35 9

Assembler
01000100

01100101

01110110

01101001

01101110

mov r8, 1846

add r8, 42

mov r9, 3

mov [a+r9*8], r8

 Often, parts of a program are
created separately

 Happens more often than you
think – almost always

 Different parts of a program are
called objects

 A linker joins them into a single
file

Linkers

Spring 2024 Sacramento State - Cook - CSc 35 10

 Connects labels (identifiers) -
used in one object - to the
object that defines it

 So, one object can call
another object

 A linker will show an error if
there are label conflicts or
missing labels

What a Linker Does

Spring 2024 Sacramento State - Cook - CSc 35 11

Linking your program

Spring 2024 Sacramento State - Cook - CSc 35 12

 UNIX header is
defined by crt1.o and
crti.o

 They are supplied
behind the scenes, so
you don't need to

worry about them

UNIX Header

_start

7 8

9 10

11 12

3

Linking your program

Spring 2024 Sacramento State - Cook - CSc 35 13

 It references a
subroutine called
_start

 But… it is not defined
in the header

 It is used to start your
program (main in Java)

UNIX Header

_start

Linking your program

Spring 2024 Sacramento State - Cook - CSc 35 14

 Your program supplies
this subroutine

 The linker connects
the two, so the header
calls your subroutine

lab.o

_start

Linking to the UNIX Header

Spring 2024 Sacramento State - Cook - CSc 35 15

UNIX Header

_start

lab.o

_start

You will use my library

Spring 2024 Sacramento State - Cook - CSc 35 16

 To make labs easier,
you will use my library

 Your program will
reference its
subroutines

lab.o

PrintInteger_start

You will use my library

Spring 2024 Sacramento State - Cook - CSc 35 17

 Once the object file
"csc35.o" is linked, the
program is complete

PrintInteger

csc35.o

You will use my library

Spring 2024 Sacramento State - Cook - CSc 35 18

UNIX Header

_start

lab.o

PrintInteger_start PrintInteger

csc35.o

13 14

15 16

17 18

4

Assembly Basics

The beautiful language of the computer

 Assembly allows you to write
machine language programs
using easy-to-read text

 Assembly programs is based
on a specific processor
architecture

 So, it won't "port"

Assembly Language

Spring 2024 Sacramento State - Cook - CSc 35 20

Assembly Benefits

1. Consistent way of writing instructions

2. Automatically counts bytes and allocates buffers

3. Labels are used to keep track of addresses which
prevents common machine-language mistakes

Spring 2024 Sacramento State - Cook - CSc 35 21

 Assembly combines related machine instructions into a
single notation (and name) called a mnemonic

 For example, the following machine-language actions
are different, but related:

• register  memory

• register  register

• constant  register

1. Consistent Instructions

Spring 2024 Sacramento State - Cook - CSc 35 22

2. Count and Allocate Buffers

Spring 2024 Sacramento State - Cook - CSc 35 23

 Assembly automatically
counts bytes and allocates
buffers

 Miscounts (when done by
hand) can be very
problematic – and can lead to
hard to find errors

 Assembly uses labels to store
addresses

 Used to keep track of
locations in your programs

• data

• subroutines (functions)

• …and much more

3. Labels & Addresses

Spring 2024 Sacramento State - Cook - CSc 35 24

19 20

21 22

23 24

5

Battle of the Syntax

 The basic concept of assembly's notation and
syntax hasn't changed

 However, there are two major competing notations

 They are just different enough to make it confusing
for students and programmers (who are used to

the other notation)

Spring 2024 Sacramento State - Cook - CSc 35 25

Battle of the Syntax

 AT&T Syntax

• dominate on UNIX / Linux systems

• registers prefixed by %, values with $

• receiving register is last

 Intel Syntax

• actually created by Microsoft

• dominate on DOS / Windows systems

• neither registers or values have a prefix

• receiving register is first

Spring 2024 Sacramento State - Cook - CSc 35 26

Just a simple add

mov $42, %rbx #rbx = 42

mov value, %rax #rax = value

add %rbx, %rax #rax += rbx

AT&T Example

Spring 2024 Sacramento State - Cook - CSc 35 27

Just a simple add

mov rbx, 42 #rbx = 42

mov rax, value #rax = value

add rax, rbx #rax += rbx

Intel Example

Spring 2024 Sacramento State - Cook - CSc 35 28

How these little beasties are organized

Assembly
Program
Structure

Assembly Programs

Spring 2024 Sacramento State - Cook - CSc 35 30

 Assembly programs are
divided into two sections

 data section allocate the
bytes to store your constants,
variables, etc…

 text section contains the
instructions that will make up
your program

25 26

27 28

29 30

6

 A directive is a special
command for the assembler

 Notation: starts with a period

 What they do:

• allocate space

• define constants

• start the text or data section

• make labels "global" for the linker

Directives

Spring 2024 Sacramento State - Cook - CSc 35 31

Labels

Spring 2024 Sacramento State - Cook - CSc 35 32

 You can define labels by
following an identifier with a
colon

 As the assembler is reading
your program, it is generating
machine code instructions
and storage

Labels

Spring 2024 Sacramento State - Cook - CSc 35 33

 When the assembler sees a
label declaration, it will save
the current address (at that
point) into a table

 Anytime you use a label, it is
replaced by that address

 Labels are addresses

.intel_syntax noprefix

.data

message:

.ascii "Hello World!\n\0"

.text

.global _start

_start:

lea rax, message

call PrintString

call Exit

Hello World – Using csc35.o

Spring 2024 Sacramento State - Cook - CSc 35 34

.intel_syntax noprefix

.data

message:

.ascii "Hello World!\n\0"

.text

.global _start

_start:

lea rax, message

call PrintString

call Exit

Hello World – Using csc35.o

Data Section

Spring 2024 Sacramento State - Cook - CSc 35 35

.intel_syntax noprefix

.data

message:

.ascii "Hello World!\n\0"

Data Section

Spring 2024 Sacramento State - Cook - CSc 35 36

Use Intel format

Start data section

No prefix characters

31 32

33 34

35 36

7

.intel_syntax noprefix

.data

message:

.ascii "Hello World!\n\0"

Data Section

Spring 2024 Sacramento State - Cook - CSc 35 37

Create a label called 'message'.

It will store an address.

Allocate the bytes required to store text

.intel_syntax noprefix

.data

message:

.ascii "Hello World!\n\0"

.text

.global _start

_start:

lea rax, message

call PrintString

call Exit

Hello World – x86, Linux

Text / Code
Section

Spring 2024 Sacramento State - Cook - CSc 35 38

.text

.global _start

_start:

lea rax, message

call PrintString

call Exit

Text / Code Section

Start text section

Make label visible to the linker.

Header will call _start

Loads the Effective Address

'message' into rbx

Call the library subroutine

(it needs an address in rbx)

Spring 2024 Sacramento State - Cook - CSc 35 39

Basics of UNIX

Feel the pow-wah of the dark side

 UNIX was developed at
AT&T’s Bell Labs in 1969

 Design goals:

• operating system for
mainframes

• stable and powerful

• but not exactly easy to use –
GUI hadn’t been invented yet

Basics UNIX

Spring 2024 Sacramento State - Cook - CSc 35 41

My name is Tux.
Yes, it's a lazy

name.

 There are versions of UNIX
with a nice graphical user
interface

 A good example is all the
various versions of Linux

 However, all you need is a
command line interface

Basics UNIX

Spring 2024 Sacramento State - Cook - CSc 35 42

37 38

39 40

41 42

8

 Command line interface is
text-only

 But, you can perform all the
same functions you can with
a graphical user interface

 This is how computer
scientists have traditionally
used computers

Command Line Interface

Spring 2024 Sacramento State - Cook - CSc 35 43

name argument1 argument2 …

Command Line Interface

 Each command starts with a name followed by zero or
more arguments

 Using these, you have the same abilities that you do in
Windows/Mac

Spaces separate name & arguments

Spring 2024 Sacramento State - Cook - CSc 35 44

 Short for List

 Lists all the files in the current
directory

 It has arguments that control how
the list will look

 Notation:

• directory names have a slash suffix

• programs have an asterisk suffix

ls Command

Spring 2024 Sacramento State - Cook - CSc 35 45

> ls

a.out* csc35/ html/ mail/

test.asm

ls Command

Spring 2024 Sacramento State - Cook - CSc 35 46

 Short for List Long

 This command is a shortcut
notation for ls -l

 Besides the filename, its size,
access rights, etc… are
displayed

ll Command

Spring 2024 Sacramento State - Cook - CSc 35 47

> ll

-rwx------ 1 cookd othcsc 4650 Sep 10 17:44 a.out*

drwx------ 2 cookd othcsc 4096 Sep 5 17:49 csc35/

drwxrwxrwx 10 cookd othcsc 4096 Sep 6 11:04 html/

drwxrwxrwx 2 cookd othcsc 4096 Jun 20 17:58 mail/

-rw------- 1 cookd othcsc 74 Sep 10 17:44 test.asm

ll Command

Spring 2024 Sacramento State - Cook - CSc 35 48

43 44

45 46

47 48

9

 Short for Remove

 It essentially deletes a file

 Be careful…

• files don't go into a "recycle bin"

• they are gone forever!

 It can also delete multiple files
using patterns

rm Command

Spring 2024 Sacramento State - Cook - CSc 35 49

> ls

a.out* html/ mail/ test.asm

> rm a.out

> ls

html/ mail/ test.asm

rm Command

Spring 2024 Sacramento State - Cook - CSc 35 50

 Nano is the UNIX text editor
(well, the best one – that is)

 It is very similar to Windows
Notepad – but can be used
on a terminal

 You will use this to write your
programs

nano Application

Spring 2024 Sacramento State - Cook - CSc 35 51

nano filename

 Nano will open and edit the filename provided

 If the file doesn't exist, it will create it

nano Application

Spring 2024 Sacramento State - Cook - CSc 35 52

 This is the GNU assembler

 It will take an assembly
program and convert it into an
object

 You will be alerted of any
syntax errors or unrecognized
mnemonics (typos)

as Command

Spring 2024 Sacramento State - Cook - CSc 35 53

as –o lab.o lab.asm

 The –o specifies the next name listed is the output file

 So, the second is the output file (object)

 The third is your input (assembly)

as Command

Spring 2024 Sacramento State - Cook - CSc 35 54

49 50

51 52

53 54

10

as –o lab.o lab.asm

 Be very careful – anything after –o will be destroyed

 There is no "undo" in UNIX!

 Check the two extensions for "o" then "asm"

as Command

Spring 2024 Sacramento State - Cook - CSc 35 55

> ls

lab.asm

> as –o lab.o lab.asm

> ls

lab.asm lab.o

as Command

Spring 2024 Sacramento State - Cook - CSc 35 56

 This is the GNU linker

 It will take one (or more)
objects and link them into an
executable

 You will be alerted of any
unresolved labels

ld Command

Spring 2024 Sacramento State - Cook - CSc 35 57

ld –o a.out csc35.o lab.o

 The -o specifies the next name is the output

 The second is the output file (executable)

 The third is your input objects (1 or more)

ld Command

Spring 2024 Sacramento State - Cook - CSc 35 58

ld –o a.out csc35.o lab.o

 Be very careful – if you list your input file (an
object) first, it will be destroyed

 I will provide the "csc35.o" file

ld Command

Spring 2024 Sacramento State - Cook - CSc 35 59

> ls

lab.o csc35.o

> ld –o a.out lab.o csc35.o

> ls

lab.o csc35.o a.out*

ld Command

Spring 2024 Sacramento State - Cook - CSc 35 60

55 56

57 58

59 60

11

 Alpine is an e-mail application

 Has an easy-to-use interface
similar to Nano

 You will use this software to
submit your work

alpine Application

Spring 2024 Sacramento State - Cook - CSc 35 61

alpine

 To run Alpine, just type its name at the command line

 There are no arguments

 You will have to login (again)

alpine Application

Spring 2024 Sacramento State - Cook - CSc 35 62

 Short for Print Working

Directory

 It displays the path your
current directory (the one you
are looking at).

 Slashes separate the
directory names

pwd Command

Spring 2024 Sacramento State - Cook - CSc 35 63

> pwd

/gaia/class/student/cookd

pwd Command

Spring 2024 Sacramento State - Cook - CSc 35 64

 Short for Change Directory

 Allows you to change your
current working directory

 If you specify a folder name,
you will move into it

 If you use .. (two dots), you
will go to the parent folder

cd Command

Spring 2024 Sacramento State - Cook - CSc 35 65

> cd csc35

> cd ..

cd Command

Move into csc35 folder

Return to parent folder

Spring 2024 Sacramento State - Cook - CSc 35 66

61 62

63 64

65 66

12

 Short for Make Directory

 Essentially the same as
making a new subfolder in
Windows or Mac-OS

 You may want to create one
to store your CSc 35 work

mkdir Command

Spring 2024 Sacramento State - Cook - CSc 35 67

> ls

a.out* html/ mail/ test.asm

> mkdir csc35

> ls

a.out* csc35/ html/ mail/ test.asm

mkdir Command

Spring 2024 Sacramento State - Cook - CSc 35 68

The raw bytes of your program

Machine
Language

Machine Language

Spring 2024 Sacramento State - Cook - CSc 35 70

 The instructions, that are
actually executed on the
processor, are just bytes

 In this raw binary form,
instructions are stored in
Machine Language (aka

Machine Code)

Machine Language

Spring 2024 Sacramento State - Cook - CSc 35 71

 Each instruction is encoded
(stored) is in a compact
binary form

 Easy for the processor to
interpret and execute

 Some instructions may take
more bytes than others – not
all are equal in complexity

Instruction Encoding

Spring 2024 Sacramento State - Cook - CSc 35 72

 Each instruction must contain
everything the processor
needs to know to do
something

 Think of them as functions in
Java: they need a name and
arguments to work

67 68

69 70

71 72

13

Instruction Encoding

Spring 2024 Sacramento State - Cook - CSc 35 73

 For example: if you want it to
add 2 things…

 The instruction needs:

• something to tell the processor
to add

• something to identify the two
"things"

• destination to save the result

Operation Codes

Spring 2024 Sacramento State - Cook - CSc 35 74

 Each instruction has a unique
operation code (Opcode)

 This is a value that specifies
the exact operation to be
performed by the processor

 Assemblers use friendly
names called mnemonics

Typical Instruction Format

Spring 2024 Sacramento State - Cook - CSc 35 75

 The opcode is, typically, followed by various operands
– what data is to be used

 These can be register codes, addressing data, literal
values, etc…

Intel x64 Encoding

Spring 2024 Sacramento State - Cook - CSc 35 76

 The Encoding of the Intel x64
Processor is complex

 …and it is very, very difficult
to encode

 So, we will practice encoding
using a different processor

Intel x64 Encoding

Spring 2024 Sacramento State - Cook - CSc 35 77

 But… don't worry…

 We will cover the Intel x64
encoding later in the
semester

Herky 6000 Processor

Spring 2024 Sacramento State - Cook - CSc 35 78

 The Herky 6000 is a simple
processor that mirrors the

behavior of the Intel x64

 … but is very easy to encode

 We will practice on it

73 74

75 76

77 78

14

Herky 6000 Specs

Spring 2024 Sacramento State - Cook - CSc 35 79

 Each instruction is 24-bit
(3 byte)

 16 general purpose registers
(we can use Intel names)

 All the major addressing
modes

Herky 6000 Specs

Spring 2024 Sacramento State - Cook - CSc 35 80

 Most instruction fields line up
cleanly on each nibble

 So, each hex digit is a field

 With a bit of practice, you can
read the machine code.

Herky 6000 Instruction Format

Spring 2024 Sacramento State - Cook - CSc 35 81

 First Byte  Opcode

• unique for every instruction

• you have to look these up

 Second Byte  Addressing

 Third Byte  Operands

• Operand B contain register #

• … or a immediate byte count

Herky 6000 Instruction Format

Spring 2024 Sacramento State - Cook - CSc 35 82

Shorthand NotationMode

regRegister Unary

immImmediate Unary

reg, regRegister, Register

reg, immRegister, Immediate

Spring 2024 Sacramento State - Cook - CSc 35 83

Very Basic Herky Modes Herky Equivalent Registers

Spring 2024 Sacramento State - Cook - CSc 35 84

HerkyIntel

r0rax

r1rbx

r2rcx

r3rdx

r4rsi

r5rdi

r6

r7

HerkyIntel

r8r8

r9r9

r10r10

r11r11

r12r12

r13r13

r14r14

r15r15

79 80

81 82

83 84

15

Herky Machine Code Example

ADD r4, r5

Spring 2024 Sacramento State - Cook - CSc 35 85

r4

0010

4

ADD reg, reg

1100 0 10 0

3 2

r5

0 01 1

5

0000 0 00 0

0 0

Unused

Herky 6000 Specs

Spring 2024 Sacramento State - Cook - CSc 35 86

 Sometimes an instruction
needs to store an immediate

 But, how many bytes is it?

 The Herky Processor the
second operand to store the
byte count

Immediate Byte Size

Spring 2024 Sacramento State - Cook - CSc 35 87

Size of Immediate (2n)ValueCode

1 byte (8-bit)00000

2 bytes (16-bit)10001

4 bytes (32-bit)20010

8 bytes (64-bit)30011

16 bytes (128-bit)40100

Herky Immediate Example

MUL r4, 47

Spring 2024 Sacramento State - Cook - CSc 35 88

r4

0010

4

MUL reg, imm

1010 0 10 1

5 3

1 byte #

0 00 0

0

0000 0 00 0

0 0

Unused 47

0100 1 11 1

2 F

Herky 2-byte Immediate Example

MUL r4, 1947

Spring 2024 Sacramento State - Cook - CSc 35 89

r4

0010

4

2 byte #

0 00 1

1

1947

000 0 11 1

0 7

1001 1 10 1

9 B

00000 0 00 0

0 0

Unused

1010 0 10 1

5 3

MUL reg, imm

Herky Call Example (Answer = 42)

CALL Answer

Spring 2024 Sacramento State - Cook - CSc 35 90

CALL imm 1 byte # 42

1110 1 00 1 0000 0 00 0 0000 0 00 0 0100 1 10 0

7 0 0 29 0 0 A

Unused Unused

85 86

87 88

89 90

16

Encoding Example

Spring 2024 Sacramento State - Cook - CSc 35

mov rax, 47

mov rcx, 1900

add rax, rcx

B3 00 00 2F

B3 00 21 07 6C

32 00 02

LDR reg, imm  1011 0011

076C = 1900. Two
bytes are needed

ADD reg, reg  0011 0100

91

 Assemblers count bytes as
data and instructions are
created

 These numbers of often
saved and used later by the
linker and the program itself

How Assemblers Work

Spring 2024 Sacramento State - Cook - CSc 35 92

Starting at 0000

Spring 2024 Sacramento State - Cook - CSc 35

mov rax, 47

mov rcx, 1900

add rax, rcx

B3 00 00 2F

B3 00 21 07 6C

32 00 02

Uses
0000 to 0003

Current address

0000

0004

0009
Uses

0004 to 0008

93

 Labels are assigned
(whenever defined) to the
current byte count

 When referenced later, their
addresses are used

 Labels do not generate bytes

How Assemblers Work

Spring 2024 Sacramento State - Cook - CSc 35 94

Starts at 2000. PrintString = 079B

Spring 2024 Sacramento State - Cook - CSc 35 95

meow:

.ascii "Kitty\0"

_start:

lea rax, meow

call PrintString

meow = 2004

4B 69 74 74 79 00

_start = 200A

E5 00 01 20 04

79 00 01 07 9B

Address for
"meow"

is inserted,

woof:

.ascii "Dog\0"

woof = 2000

44 6F 67 00

Created 4
bytes

2004

2004

200A

200A

200F

2000

2000

Resulting Machine Code

Spring 2024 Sacramento State - Cook - CSc 35 96

43 61 74 74 79 00

E5 00 01 20 04

79 00 01 07 9B

44 6F 67 00

2004

200A

200F

2000

Labels aren't present in
executable programs

These nice visual line breaks
aren't present either

Nor this column

91 92

93 94

95 96

17

A More Accurate View

Spring 2024 Sacramento State - Cook - CSc 35 97

44 6F 67 00 43 61 74 74 79 00 E5 00 01 20 04 79 00 01 07 9B

Just a series of bytes

 Programs are just a long
array of bytes

 Some bytes contain data and
others are part of instructions

 This is what a program truly

is… just a series of bytes

The Result

Spring 2024 Sacramento State - Cook - CSc 35 98

97 98

