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Programs

Part 3 Programs, Coding, and Nerds… oh my!

Compilers, 
Assemblers & 
Linkers

Compilers & Assemblers

Spring 2024 Sacramento State - Cook - CSc 35 3

 When you hit "compile" or 
"run" (e.g. in your Java IDE), 
many actions take place 
"behind the scenes"

 You are usually only aware of 
the work that the parser does

Development Process

1. Write program in high-level language

2. Compile program into assembly

3. Assemble program into objects

4. Link multiple objects programs into one executable

5. Load executable into memory

6. Execute it
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From Abstract to Machine

High-Level Language 
3rd Generation

Assembly
2nd Generation

Machine Code
1st Generation
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Compiler

Assembler

 Convert programs from high-level languages (such 
as C or C++) into assembly language

 Some create machine-code directly…

 Interpreters, however…

• never compile code

• Instead, they run parts of their own program

Compiler

Spring 2024 Sacramento State - Cook - CSc 35 6

1 2

3 4

5 6



2

Compilers: 3rd → 2nd Generation

mov r8, 1846

add r8, 42

mov r9, 3

mov [a+r9*8], r8

x = 1846;

x += 42;

n = 3;

a[n] = x;
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Compiler

Assembler

 Converts assembly into the binary representation 
used by the processor

 Often the result is an object file

• usually not executable - yet

• contains computer instructions and information on how 
to "link" into other executable units

• file may include: relocation data, unresolved labels, 
debugging data
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Assembler: 2nd → 1st Generation
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Assembler
01000100

01100101

01110110

01101001

01101110

mov r8, 1846

add r8, 42

mov r9, 3

mov [a+r9*8], r8

 Often, parts of a program are 
created separately

 Happens more often than you 
think – almost always

 Different parts of a program are 
called objects

 A linker joins them into a single 
file

Linkers
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 Connects labels (identifiers) -
used in one object - to the 
object that defines it

 So, one object can call 
another object

 A linker will show an error if 
there are label conflicts or 
missing labels

What a Linker Does
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Linking your program
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 UNIX header is 
defined by crt1.o and 
crti.o

 They are supplied 
behind the scenes, so 
you don't need to 

worry about them

UNIX Header

_start
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Linking your program
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 It references a 
subroutine called 
_start 

 But… it is not defined 
in the header

 It is used to start your 
program (main in Java)

UNIX Header

_start

Linking your program
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 Your program supplies 
this subroutine

 The linker connects 
the two, so the header 
calls your subroutine

lab.o

_start

Linking to the UNIX Header
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UNIX Header

_start

lab.o

_start

You will use my library
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 To make labs easier, 
you will use my library

 Your program will 
reference its 
subroutines

lab.o

PrintInteger_start

You will use my library
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 Once the object file 
"csc35.o" is linked, the 
program is complete

PrintInteger

csc35.o

You will use my library
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UNIX Header

_start

lab.o

PrintInteger_start PrintInteger

csc35.o
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Assembly Basics

The beautiful language of the computer

 Assembly allows you to write 
machine language programs 
using easy-to-read text

 Assembly programs is based 
on a specific processor 
architecture

 So, it won't "port"

Assembly Language
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Assembly Benefits

1. Consistent way of writing instructions 

2. Automatically counts bytes and allocates buffers

3. Labels are used to keep track of addresses which 
prevents common machine-language mistakes
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 Assembly combines related machine instructions into a 
single notation (and name) called a mnemonic 

 For example, the following machine-language actions 
are different, but related:

• register  memory

• register  register

• constant  register

1. Consistent Instructions
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2. Count and Allocate Buffers
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 Assembly automatically 
counts bytes and allocates 
buffers

 Miscounts (when done by 
hand) can be very 
problematic – and can lead to 
hard to find errors

 Assembly uses labels to store 
addresses

 Used to keep track of 
locations in your programs

• data

• subroutines (functions)

• …and much more

3. Labels & Addresses
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Battle of the Syntax

 The basic concept of assembly's notation and 
syntax hasn't changed

 However, there are two major competing notations

 They are just different enough to make it confusing 
for students and programmers (who are used to 

the other notation)
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Battle of the Syntax

 AT&T Syntax

• dominate on UNIX / Linux systems

• registers prefixed by %, values with $

• receiving register is last

 Intel Syntax 

• actually created by Microsoft

• dominate on DOS / Windows systems 

• neither registers or values have a prefix

• receiving register is first
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# Just a simple add

mov $42, %rbx      #rbx = 42

mov value, %rax    #rax = value

add %rbx, %rax     #rax += rbx

AT&T Example
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# Just a simple add

mov rbx, 42        #rbx = 42

mov rax, value     #rax = value

add rax, rbx       #rax += rbx

Intel Example
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How these little beasties are organized

Assembly
Program 
Structure

Assembly Programs
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 Assembly programs are 
divided into two sections

 data section allocate the 
bytes to store your constants, 
variables, etc…

 text section contains the 
instructions that will make up 
your program
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 A directive is a special 
command for the assembler

 Notation: starts with a period

 What they do:

• allocate space

• define constants

• start the text or data section

• make labels "global" for the linker

Directives
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Labels
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 You can define labels by 
following an identifier with a 
colon

 As the assembler is reading 
your program, it is generating 
machine code instructions 
and storage

Labels
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 When the assembler sees a 
label declaration, it will save 
the current address (at that 
point) into a table

 Anytime you use a label, it is 
replaced by that address

 Labels are addresses

.intel_syntax noprefix

.data                          

message:                      

.ascii "Hello World!\n\0"

.text                     

.global _start

_start: 

lea   rax, message

call  PrintString

call  Exit

Hello World – Using csc35.o
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.intel_syntax noprefix

.data                          

message:                      

.ascii "Hello World!\n\0"

.text                     

.global _start

_start: 

lea   rax, message

call  PrintString

call  Exit

Hello World – Using csc35.o

Data Section
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.intel_syntax noprefix

.data                          

message:                      

.ascii "Hello World!\n\0"

Data Section
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Use Intel format

Start data section

No prefix characters

31 32

33 34

35 36
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.intel_syntax noprefix

.data                          

message:                      

.ascii "Hello World!\n\0"

Data Section
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Create a label called 'message'.

It will store an address.

Allocate the bytes required to store text

.intel_syntax noprefix

.data                          

message:                      

.ascii "Hello World!\n\0"

.text                     

.global _start

_start: 

lea   rax, message

call  PrintString

call  Exit

Hello World – x86, Linux

Text / Code 
Section
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.text                     

.global _start

_start: 

lea   rax, message

call  PrintString

call  Exit

Text / Code Section

Start text section

Make label visible to the linker. 

Header will call  _start

Loads the Effective Address 

'message' into rbx

Call the library subroutine 

(it needs an address in rbx)
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Basics of UNIX

Feel the pow-wah of the dark side

 UNIX was developed at 
AT&T’s Bell Labs in 1969

 Design goals:

• operating system for 
mainframes 

• stable and powerful

• but not exactly easy to use –
GUI hadn’t been invented yet

Basics UNIX
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My name is Tux. 
Yes, it's a lazy 

name.

 There are versions of UNIX 
with a nice graphical user 
interface

 A good example is all the 
various versions of Linux

 However, all you need is a 
command line interface

Basics UNIX
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 Command line interface is 
text-only

 But, you can perform all the 
same functions you can with 
a graphical user interface

 This is how computer 
scientists have traditionally 
used computers

Command Line Interface
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name argument1 argument2 … 

Command Line Interface

 Each command starts with a name followed by zero or 
more arguments

 Using these, you have the same abilities that you do in 
Windows/Mac

Spaces separate name & arguments
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 Short for List

 Lists all the files in the current 
directory 

 It has arguments that control how 
the list will look 

 Notation:

• directory names have a slash suffix

• programs have an asterisk suffix

ls Command
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> ls

a.out*  csc35/  html/  mail/    

test.asm

ls Command
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 Short for List Long

 This command is a shortcut 
notation for ls -l

 Besides the filename, its size, 
access rights, etc… are 
displayed

ll Command
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> ll

-rwx------ 1 cookd othcsc 4650 Sep 10 17:44 a.out*

drwx------ 2 cookd othcsc 4096 Sep  5 17:49 csc35/

drwxrwxrwx 10 cookd othcsc 4096 Sep  6 11:04 html/

drwxrwxrwx 2 cookd othcsc 4096 Jun 20 17:58 mail/

-rw------- 1 cookd othcsc 74 Sep 10 17:44 test.asm

ll Command
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 Short for Remove

 It essentially deletes a file

 Be careful… 

• files don't go into a "recycle bin"

• they are gone forever!

 It can also delete multiple files 
using patterns

rm Command
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> ls

a.out*  html/  mail/  test.asm

> rm a.out

> ls

html/  mail/  test.asm

rm Command
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 Nano is the UNIX text editor 
(well, the best one – that is)

 It is very similar to Windows 
Notepad – but can be used 
on a terminal

 You will use this to write your 
programs

nano Application
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nano filename

 Nano will open and edit the filename provided

 If the file doesn't exist, it will create it

nano Application
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 This is the GNU assembler

 It will take an assembly 
program and convert it into an 
object

 You will be alerted of any 
syntax errors or unrecognized 
mnemonics (typos)

as Command
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as –o lab.o lab.asm

 The –o specifies the next name listed is the output file

 So, the second is the output file (object)

 The third is your input (assembly)  

as Command
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as –o lab.o lab.asm

 Be very careful – anything after –o will be destroyed

 There is no "undo" in UNIX!

 Check the two extensions for "o" then "asm"

as Command
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> ls

lab.asm

> as –o lab.o lab.asm

> ls

lab.asm  lab.o

as Command
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 This is the GNU linker

 It will take one (or more) 
objects and link them into an 
executable

 You will be alerted of any 
unresolved labels

ld Command
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ld –o a.out csc35.o lab.o

 The -o specifies the next name is the output

 The second is the output file (executable)

 The third is your input objects (1 or more)  

ld Command
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ld –o a.out csc35.o lab.o

 Be very careful – if you list your input file (an 
object) first, it will be destroyed

 I will provide the "csc35.o" file

ld Command
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> ls

lab.o csc35.o

> ld –o a.out lab.o csc35.o

> ls

lab.o csc35.o  a.out*

ld Command
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 Alpine is an e-mail application 

 Has an easy-to-use interface 
similar to Nano

 You will use this software to 
submit your work

alpine Application
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alpine

 To run Alpine, just type its name at the command line

 There are no arguments

 You will have to login (again)

alpine Application
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 Short for Print Working 

Directory

 It displays the path your 
current directory (the one you 
are looking at).

 Slashes separate the 
directory names

pwd Command
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> pwd

/gaia/class/student/cookd

pwd Command

Spring 2024 Sacramento State - Cook - CSc 35 64

 Short for Change Directory

 Allows you to change your 
current working directory

 If you specify a folder name, 
you will move into it

 If you use .. (two dots), you 
will go to the parent folder

cd Command
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> cd csc35

> cd ..

cd Command

Move into csc35 folder

Return to parent folder
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 Short for Make Directory

 Essentially the same as 
making a new subfolder in 
Windows or Mac-OS

 You may want to create one 
to store your CSc 35 work

mkdir Command
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> ls

a.out*  html/  mail/  test.asm

> mkdir csc35

> ls

a.out*  csc35/ html/  mail/  test.asm

mkdir Command
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The raw bytes of your program

Machine 
Language

Machine Language
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 The instructions, that are 
actually executed on the 
processor, are just bytes

 In this raw binary form, 
instructions are stored in 
Machine Language (aka 

Machine Code)

Machine Language
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 Each instruction is encoded 
(stored) is in a compact 
binary form

 Easy for the processor to 
interpret and execute

 Some instructions may take 
more bytes than others – not 
all are equal in complexity

Instruction Encoding
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 Each instruction must contain
everything the processor 
needs to know to do 
something

 Think of them as functions in 
Java: they need a name and 
arguments to work

67 68

69 70

71 72
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Instruction Encoding
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 For example: if you want it to 
add 2 things…

 The instruction needs:

• something to tell the processor 
to add

• something to identify the two 
"things"

• destination to save the result

Operation Codes
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 Each instruction has a unique
operation code (Opcode)

 This is a value that specifies 
the exact operation to be 
performed by the processor

 Assemblers use friendly 
names called mnemonics

Typical Instruction Format
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 The opcode is, typically, followed by various operands
– what data is to be used

 These can be register codes, addressing data, literal 
values, etc…

Intel x64 Encoding

Spring 2024 Sacramento State - Cook - CSc 35 76

 The Encoding of the Intel x64 
Processor is complex

 …and it is very, very difficult 
to encode

 So, we will practice encoding 
using a different processor

Intel x64 Encoding
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 But… don't worry…

 We will cover the Intel x64 
encoding later in the 
semester

Herky 6000 Processor
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 The Herky 6000 is a simple 
processor that mirrors the 

behavior of the Intel x64

 … but is very easy to encode

 We will practice on it

73 74
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Herky 6000 Specs
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 Each instruction is 24-bit 
(3 byte)

 16 general purpose registers 
(we can use Intel names)

 All the major addressing 
modes

Herky 6000 Specs
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 Most instruction fields line up 
cleanly on each nibble

 So, each hex digit is a field

 With a bit of practice, you can 
read the machine code.

Herky 6000 Instruction Format
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 First Byte  Opcode

• unique for every instruction 

• you have to look these up

 Second Byte  Addressing

 Third Byte  Operands

• Operand B contain register # 

• … or a immediate byte count

Herky 6000 Instruction Format
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Shorthand NotationMode

regRegister Unary

immImmediate Unary

reg, regRegister, Register

reg, immRegister, Immediate
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Very Basic Herky Modes Herky Equivalent Registers
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HerkyIntel

r0rax

r1rbx

r2rcx

r3rdx

r4rsi

r5rdi

r6

r7

HerkyIntel

r8r8

r9r9

r10r10

r11r11

r12r12

r13r13

r14r14

r15r15

79 80
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Herky Machine Code Example 

ADD r4, r5
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r4

0010

4

ADD reg, reg

1100 0 10 0

3 2

r5

0 01 1

5

0000 0 00 0

0 0

Unused

Herky 6000 Specs
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 Sometimes an instruction 
needs to store an immediate

 But, how many bytes is it?

 The Herky Processor the 
second operand to store the 
byte count

Immediate Byte Size
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Size of Immediate (2n)ValueCode

1 byte (8-bit)00000

2 bytes (16-bit)10001

4 bytes (32-bit)20010

8 bytes (64-bit)30011

16 bytes (128-bit)40100

Herky Immediate Example

MUL r4, 47
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r4

0010

4

MUL reg, imm

1010 0 10 1

5 3

1 byte #

0 00 0

0

0000 0 00 0

0 0

Unused 47

0100 1 11 1

2 F

Herky 2-byte Immediate Example

MUL r4, 1947
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r4

0010

4

2 byte #

0 00 1

1

1947

000 0 11 1

0 7

1001 1 10 1

9 B

00000 0 00 0

0 0

Unused

1010 0 10 1

5 3

MUL reg, imm

Herky Call Example (Answer = 42)

CALL Answer
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CALL imm 1 byte # 42

1110 1 00 1 0000 0 00 0 0000 0 00 0 0100 1 10 0

7 0 0 29 0 0 A

Unused Unused

85 86

87 88

89 90
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Encoding Example
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mov rax, 47

mov rcx, 1900

add rax, rcx

B3 00 00 2F

B3 00 21 07 6C

32 00 02

LDR reg, imm  1011 0011

076C = 1900. Two 
bytes are needed

ADD reg, reg  0011 0100

91

 Assemblers count bytes as 
data and instructions are 
created

 These numbers of often 
saved and used later by the 
linker and the program itself

How Assemblers Work
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Starting at 0000
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mov rax, 47

mov rcx, 1900

add rax, rcx

B3 00 00 2F

B3 00 21 07 6C

32 00 02

Uses 
0000 to 0003

Current address

0000

0004

0009
Uses 

0004 to 0008

93

 Labels are assigned 
(whenever defined) to the 
current byte count

 When referenced later, their 
addresses are used

 Labels do not generate bytes

How Assemblers Work
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Starts at 2000. PrintString = 079B
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meow:

.ascii "Kitty\0"

_start:

lea rax, meow

call PrintString

meow = 2004

4B 69 74 74 79 00

_start = 200A

E5 00 01 20 04 

79 00 01 07 9B 

Address for 
"meow" 

is inserted,

woof:

.ascii "Dog\0"

woof = 2000

44 6F 67 00

Created 4 
bytes

2004

2004

200A

200A

200F

2000

2000

Resulting Machine Code
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43 61 74 74 79 00

E5 00 01 20 04 

79 00 01 07 9B 

44 6F 67 00

2004

200A

200F

2000

Labels aren't present in 
executable programs

These nice visual line breaks 
aren't present either

Nor this column

91 92

93 94
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A More Accurate View
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44 6F 67 00 43 61 74 74 79 00 E5 00 01 20 04 79 00 01 07 9B

Just a series of bytes

 Programs are just a long 
array of bytes

 Some bytes contain data and 
others are part of instructions

 This is what a program truly

is… just a series of bytes

The Result
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