
1

Addressing

Part 4

Buffers

Creating your own space

 A buffer is any allocated block
of memory that contains data

 This can hold anything:

• text

• image

• file

• etc….

Buffers

Spring 2024 Sacramento State - Cook - CSc 35 3

 There are several assembly

directives which will allocate

space

 We have covered a few of

them, but there are many – all
with a specific purpose

Buffers

Spring 2024 Sacramento State - Cook - CSc 35 4

What it doesDirective

Allocate enough space to store an ASCII string.ascii

Allocate 8-byte blocks with initial value(s).quad

Allocate byte(s) with initial value(s).byte

Allocate any size of empty bytes (with initial values). .space

Spring 2024 Sacramento State - Cook - CSc 35 5

A few directives that create space

 Labels are used to keep track

of memory locations

 They are stored, by the

assembler, in a table

 Whenever a label is used in

the program, the assembler

substitutes the address

Labels are addresses

Spring 2024 Sacramento State - Cook - CSc 35 6

1 2

3 4

5 6

2

 The table of labels is stored in

the object file

 That way the linker can

resolve any unknown labels

 After the program is linked

into an executable, only

addresses exist. No labels.

Labels are addresses

Spring 2024 Sacramento State - Cook - CSc 35 7

Value:

.quad 74

Quad Directive

Let's assume Value = 2000
4A

00

00

00

00

2000

00

2001

2002

2003

2004

2005

002006

002007

Spring 2024 Sacramento State - Cook - CSc 35 8

Greeting:

.ascii "Hello\0"

ASCII Directive Creates a Buffer

This label will store an

address… once the assembler

finds where to store it.

Creates 6 bytes to store Hello.

They are stored consequently.

Spring 2024 Sacramento State - Cook - CSc 35 9

Greeting:

.ascii "Hello\0"

Bytes are stored consecutively

Let's assume Greeting = 2000
48 H

65 e

6C l

6C l

6F o

2000

00 \0

2001

2002

2003

2004

2005

Spring 2024 Sacramento State - Cook - CSc 35 10

Greeting:

.byte 'H'

.byte 'e'

.byte 'l'

.byte 'l'

.byte 'o'

.byte 0

Same Thing!

Created byte

by byte

Spring 2024 Sacramento State - Cook - CSc 35 11

Null character. Marks

the end of a string

Greeting:

.ascii "Hello"

.byte 0

This works too!

Directives just create

space. So, this creates a
byte after the ASCII text.

Spring 2024 Sacramento State - Cook - CSc 35 12

7 8

9 10

11 12

3

EmptyBuffer:

.space 30

Create a Buffer of Any Size

Create 30 bytes

(defaults to 0x20
which is a space)

Spring 2024 Sacramento State - Cook - CSc 35 13

EmptyBuffer:

.space 30, 0

Create a Buffer of Any Size

Create 30 bytes.

All of which are 0.

Spring 2024 Sacramento State - Cook - CSc 35 14

Addressing

Modes Basics

How to interact with memory

 Processor instructions often need
to access memory to read values
and store results

 So far, we have used registers to
read and store single values

 However, we need to:

• access items in an array

• follow pointers

• and more!

Addressing Modes

Spring 2024 Sacramento State - Cook - CSc 35 16

Addressing Modes

Spring 2024 Sacramento State - Cook - CSc 35 17

 How the processor can locate
and read data is called an
addressing mode

 Information combined from
registers, immediates, etc…
to create a target address

 Modes vary greatly between
processors

4 Basic Addressing Modes

Spring 2024 Sacramento State - Cook - CSc 35 18

 Immediate Addressing

 Register Addressing

 Direct Addressing

 Indirect Addressing

13 14

15 16

17 18

4

Immediate Addressing

 Immediate addressing is one of the most basic

modes found on a processor

 Often a value is stored as part of the instruction

 As the result, it is immediately available

 Very common for assigning constants

Spring 2024 Sacramento State - Cook - CSc 35 19

Immediate Addressing

Opcode and other

instruction data

Result is stored with

the instruction

Spring 2024 Sacramento State - Cook - CSc 35 20

opcode Value

Instruction

Reg

Load Immediate

Spring 2024 Sacramento State - Cook - CSc 35 21

 A Load Immediate instruction, stores a constant into a
register

 The instruction must store the destination register and
the immediate value

Load

Immediate
Destination Value

Opcode Register Immediate

mov rcx, 1947

Example: Immediate Addressing

immediate

Spring 2024 Sacramento State - Cook - CSc 35 22

 The following, for comparison, is the equivalent

code in Java

 The register file (for rcx) is set to the value 1947.

// rcx = 1947;

mov rcx, 1947

Register & Immediate in Java

Spring 2024 Sacramento State - Cook - CSc 35 23

Call Instruction

Spring 2024 Sacramento State - Cook - CSc 35 24

 The Call instruction doesn't change any of the general-
purpose registers

 It only stores an address – where execution will
continue

Call Subroutine Address

Opcode Immediate

19 20

21 22

23 24

5

 Register addressing is used

in practically all computer

instructions

 A value is read from or stored

into one of the processor's
registers

Register Addressing

Spring 2024 Sacramento State - Cook - CSc 35 25

Register Addressing

Spring 2024 Sacramento State - Cook - CSc 35 26

Value

opcode Reg #

Instruction Register File

Reg 0

1

2

3

Transfer

Spring 2024 Sacramento State - Cook - CSc 35 27

 A Transfer instruction, copies the contents of one
instruction into another

 The instruction must store both the destination and
source register

Transfer Destination Source

Opcode Register Register

Load & Store

Saving and retrieving values

 Often data is accessed from

memory

 Memory is an important part
of von Neuman architecture

 As such, there are many

ways of accessing it

Load & Store

Spring 2024 Sacramento State - Cook - CSc 35 29

 On some processors, only

Load and Store can access

memory

 The Intel processor allows

multiple instructions to have
load/store capabitilies

Load & Store

Spring 2024 Sacramento State - Cook - CSc 35 30

25 26

27 28

29 30

6

Load

Spring 2024 Sacramento State - Cook - CSc 35 31

 A Load instruction, reads data

from memory (at a specified

address)

 This data is then stored into

the destination register

Load

Spring 2024 Sacramento State - Cook - CSc 35 32

 A load needs to store the destination register as

well as the address in memory

 Note that this is stored as an immediate

Load Destination Source Address

Opcode Register Immediate

Store

Spring 2024 Sacramento State - Cook - CSc 35 33

 A Store instruction, writes

data from a register into the

specified address

 So, it's the opposite of the

Load

Store

Spring 2024 Sacramento State - Cook - CSc 35 34

 Like Load, the Store instruction needs to specify an

address

 Note: the structure is identical to Load

Store Source Destination Address

Opcode Register Immediate

Direct

Addressing

Using Memory for "Variables"

Direct Addressing

Spring 2024 Sacramento State - Cook - CSc 35 36

 In direct addressing, the

processor reads data directly

from an address

 Commonly used to:

• get a value from a "variable"

• read items in an array

• etc...

31 32

33 34

35 36

7

Direct Addressing

Spring 2024 Sacramento State - Cook - CSc 35 37

opcode Address

Memory

Value

Instruction

opcode

Instruction

Reg 0

1

2

3

4

5

// rdx = Memory[total];

mov rdx, total

Direct in Java

 Note: this a shortcut notation

 The full notation would use square brackets

 The assembler recognizes the difference automatically

Spring 2024 Sacramento State - Cook - CSc 35 38

 You can use the square-brackets if you want

 This way it explicitly show how the label is being
used – it’s a matter of preference

// rdx = Memory[total];

mov rdx, [total]

Direct in Java (alternative notation)

Spring 2024 Sacramento State - Cook - CSc 35 39

.intel_syntax noprefix

.data

funds:

.quad 100

.text

.global _start

_start:

mov rdx, funds

Example: Direct Load

64 bit integer

with an initial value of 100.

Read 8 bytes at this address.

Doesn't store the address in rdx.

Spring 2024 Sacramento State - Cook - CSc 35 40

.intel_syntax noprefix

.data

funds:

.quad 100

.text

.global _start

_start:

mov rdx, [funds]

Example: Direct

A bit more descriptive

Spring 2024 Sacramento State - Cook - CSc 35 41

.intel_syntax noprefix

.data

funds:

.quad 200

.text

.global _start

_start:

mov rcx, 2500

mov funds, rcx

Example: Direct Store

Store rcx into Address "funds"

Spring 2024 Sacramento State - Cook - CSc 35 42

37 38

39 40

41 42

8

.intel_syntax noprefix

.data

funds:

.quad 100

.text

.global _start

_start:

call ScanInteger

mov funds, rax

Example: Direct Store 2

You can store inputted values.

Spring 2024 Sacramento State - Cook - CSc 35 43

When to use
mov and lea

The difference is huge!

 Knowing when to use an

address or the data located

at that address is vital

 Using the wrong one can

cause your program to
malfunction or crash

When to use mov and lea

Fall 2023 Sacramento State - Cook - CSc 35 45

 This is one of the most

common mistakes in

assembly programming

Cause of the Segmentation Fault

Fall 2023 Sacramento State - Cook - CSc 35 46

.intel_syntax noprefix

.data

Year:

.quad 1947

.text

.global _start

_start:

mov rax, Year

call PrintInteger

Using Move Correctly

Creates 8 bytes

Fall 2023 Sacramento State - Cook - CSc 35 47

mov loads the data located

at the address Year

1947

Using move Correctly: Output

Fall 2023 Sacramento State - Cook - CSc 35 48

Correct output. mov

loaded the data from
an address

43 44

45 46

47 48

9

.intel_syntax noprefix

.data

Year:

.quad 1947

.text

.global _start

_start:

lea rax, Year

call PrintInteger

Using lea by accident

Creates 8 bytes

lea is going to store the

address Year into rax

Fall 2023 Sacramento State - Cook - CSc 35 49

6293248

Using lea by accident

Fall 2023 Sacramento State - Cook - CSc 35 50

That's wrong…

very, very wrong

.intel_syntax noprefix

.data

Year:

.quad 1947

.text

.global _start

_start:

lea rax, Year

call PrintInteger

Why it Failed

Fall 2023 Sacramento State - Cook - CSc 35 51

19476293248

6293256

6293264

6293240

6293232

1947 was being stored

at this address

 Of course, sometimes, you do need an address

 For example, PrintString

• needs to know where the string is located so it can print

a series of characters

• so, it requires an address

• lea is necessary

Fall 2023 Sacramento State - Cook - CSc 35 52

Sometimes, You Need the Address

.intel_syntax noprefix

.data

Message:

.ascii "Hello!!\0"

.text

.global _start

_start:

lea rax, Message

call PrintString

Using lea correctly

Loads the effective

address into rax

Fall 2023 Sacramento State - Cook - CSc 35 53

Hello!!

Using lea correctly: Output

Fall 2023 Sacramento State - Cook - CSc 35 54

Correct output.

PrintString went to the
address and printed

characters

49 50

51 52

53 54

10

.intel_syntax noprefix

.data

Message:

.ascii "Hello!!\0"

.text

.global _start

_start:

mov rax, Message

call PrintString

Cause of the Segmentation Fault

Fall 2023 Sacramento State - Cook - CSc 35 55

Creates 8 bytes using

ASCII values

Used mov rather than lea.

rax is 64-bit (8 bytes)

.intel_syntax noprefix

.data

Message:

.ascii "Hello!!\0"

.text

.global _start

_start:

mov rax, Message

call PrintString

Cause of the Segmentation Fault

48 H

65 e

6C l

6C l

6F o

Message

21 !

21 !

00 \0

Fall 2023 Sacramento State - Cook - CSc 35 56

.intel_syntax noprefix

.data

Message:

.ascii "Hello!!\0"

.text

.global _start

_start:

mov rax, Message

call PrintString

Cause of the Segmentation Fault

Fall 2023 Sacramento State - Cook - CSc 35 57

48 H

65 e

6C l

6C l

6F o

Message

21 !

21 !

00 \0

Grabs 8 bytes and

creates a huge value

Indirect

Addressing

The Power of Pointers

Indirect Addressing

Spring 2024 Sacramento State - Cook - CSc 35 59

 Register Indirect reads data from
an address stored in register

 Same concept as a pointer

 Benefits:

• it is just as fast as direct addressing

• processor already has the address

• … and very common

Register Indirect Addressing

Spring 2024 Sacramento State - Cook - CSc 35 60

opcode

Memory

Value

Instruction

opcode

Instruction

Reg 0

1

2

3

4

5

Reg #

Address

Register File

0

1

2

3

55 56

57 58

59 60

11

// rbx = total;

lea rbx, total

Load Effective Address

 Load Effective Address stores the address into a
register

 It computes the address (as it if was going to read from
memory), but just stores that value

Spring 2024 Sacramento State - Cook - CSc 35 61

// rbx = total;

lea rbx, [total]

Load Effective Address

 So, just like normal direct addressing, the brackets

are implied

Spring 2024 Sacramento State - Cook - CSc 35 62

 The following, for comparison, is the equivalent code in Java

 The value in rbx is used as the address to read from memory.

 The brackets here are necessary!

// rcx = Memory[rbx];

mov rcx, [rbx]

Indirect in Java

Spring 2024 Sacramento State - Cook - CSc 35 63

.intel_syntax noprefix

.data

total:

.quad 451

.text

.global _start

_start:

lea rcx, total

mov rbx, [rcx]

Example: Indirect

64 bit integer. With an initial

value of 451.

Load the address into rcx

rbx gets the data from the

address stored in rcx

Spring 2024 Sacramento State - Cook - CSc 35 64

Herky Indirect Load Example (64-bit)

Spring 2024 Sacramento State - Cook - CSc 35 65

LDR r5, [r3]

LDR reg, [reg]

1101 0 01 0

B 4

Same as MOV

0000

0

Unused

0 10 1

3

8 bytes

Register is 64 bits, so we tell the

processor to load 8 bytes

Herky Indirect Load Example (64-bit)

Spring 2024 Sacramento State - Cook - CSc 35 66

Same as MOV LDR r5, [r3]

r5

1010

5

LDR reg, [reg]

1101 0 01 0

B 4

r3

0 10 1

3

0000

0

Unused

0 10 1

3

8 bytes

61 62

63 64

65 66

12

Encoding Intel using Herky

(start at 3000 for demo purposes)

Spring 2024 Sacramento State - Cook - CSc 35 67

.text

.global _start

_start:

lea rcx, total

mov rbx, [rcx]

_start = 3008

E5 00 21 30 00

B4 03 12

3000 is value of

"total"

total:

.quad 451

total = 3000

00 00 00 00 00 00 01 C3

Created 8

bytes

3008

3008

3008

3008

300D

3000

3000

3 is needed here.

Need to load 8 bytes

67

