
1

Memory Indexing

Part 5

Sizing

Instructions

How many bytes are you using?

Sizing Instructions

Fall 2023 Sacramento State - Cook - CSc 35 3

 The Intel can load/store 1-

byte, 2-byte, 4-byte or 8-byte

values

 Whenever a processor
accesses memory, the
instruction specifies how

many bytes to access

Sizing Instructions

Fall 2023 Sacramento State - Cook - CSc 35 4

 The assembler will

automatically fill this

information in for you.

 How? If a register is used, the

assembly can assume it by
looking at size of the register

Sizing Instructions

Fall 2023 Sacramento State - Cook - CSc 35 5

 However, sometimes the

number of bytes (1, 2, etc..)

can't be determined

 In this case, the assembler

will report an error

 … since it doesn't know how

to encode the instruction

.intel_syntax noprefix

.data

total:

.quad 0

.text

.global _start

_start:

mov total, 50

Example: How Many Bytes?

total is a target address.

It doesn't have any
implied size.

Fall 2023 Sacramento State - Cook - CSc 35 6

1 2

3 4

5 6

2

.intel_syntax noprefix

.data

total:

.quad 0

.text

.global _start

_start:

mov total, 50

Example: How Many Bytes?

How many bytes is this?

The value 50 can be
stored in 1, 2, 4, or 8

bytes.

Fall 2023 Sacramento State - Cook - CSc 35 7

 If the assembler can't infer how many bytes to

access, it'll will report "ambiguous operand size"

 To address this issue…

• GAS assembly allows you places a single character

after the instruction's mnemonic

• this suffix will tell the assembler how many bytes will be

accessed during the operation

How Many Bytes?

Fall 2023 Sacramento State - Cook - CSc 35 8

SizeNameSuffix

1 bytebyte b

2 bytesshorts

4 byteslongl

8 bytesquadq

Fall 2023 Sacramento State - Cook - CSc 35 9

How Many Bytes

.intel_syntax noprefix

.data

total:

.quad 0

.text

.global _start

_start:

movq total, 50

Example: Suffix Used

Note the q.

Now the assembler knows
you mean "move quad".

Fall 2023 Sacramento State - Cook - CSc 35 10

Herky Load 4 Byte (32-bit) Example

Fall 2023 Sacramento State - Cook - CSc 35 11

LDRd r4, [42]

r4

0010

4

MUL reg, [imm]

1010 0 10 1

5 3

20 = 1 byte

0 00 0

0

47

0100 1 10 0

2 A

0000

0

Unused

0 10 0

2

22 = 4 bytes

Save as MOV

Behind the

Scenes of Arrays

All the mystery is revealed!

7 8

9 10

11 12

3

Arrays

Fall 2023 Sacramento State - Cook - CSc 35 13

 Computers do not have an
'array' data type

 So, how do you have array
variables?

 When you create an array…

• you allocate a block of memory

• each element is located
sequentially in memory – one right
after each other

 Every byte in memory has an address

 This is just like an array

 To get an array element

• we merely need to compute the address

• we must also remember that some values take multiple

bytes – so there is math

Arrays

Fall 2023 Sacramento State - Cook - CSc 35 14

Array Math Example

Fall 2023 Sacramento State - Cook - CSc 35 15

 Let's again assume that our
buffer starts at address 2000

 The first array element is
located at address 2000

 Arrays consists of bytes…

• the second is 2001

• the third is 2002

• the fourth 2003

• etc…

H2000

e2001

l2002

l2003

o2004

Array Math Example – 16 bit

Fall 2023 Sacramento State - Cook - CSc 35 16

 First element uses
2000… 2001

 Since each array
element is 2 bytes…

• second address is 2002

• third address is 2004

• fourth address is 2006

• etc…

F0A32000

042B2002

C1F12004

0D0B2006

9C2A2008

Array Math Example – 64 bit

Fall 2023 Sacramento State - Cook - CSc 35 17

 First element uses
2000 to 2007

 Second address is
2008

 Third address is 2016

 Fourth address is 2024

 etc…

446576696E20436F2000

6F6B0000000000002008

53616372616D656E2016

746F2053746174652024

43534333350000002032

start address + (index × size)

Behind the Scenes…

Fall 2023 Sacramento State - Cook - CSc 35 18

 So, when an array element is read, internally, a
mathematical equation is used

 It uses the start of the first element, the array index,
and the size of each element

13 14

15 16

17 18

4

Behind the Scenes…

 This is why the C Programming Languages uses zero
as the first array element

 If zero is used with this formula, it gets the start of the
buffer

start address + (index × size)

Fall 2023 Sacramento State - Cook - CSc 35 19

Behind the Scenes…

 Java uses zero-indexing because C does

 … and C does so it can create efficient assembly!

start address + (index × size)

Fall 2023 Sacramento State - Cook - CSc 35 20

Grabbing any byte

Indexing on the

x64

Indexing on the x64

Fall 2023 Sacramento State - Cook - CSc 35 22

 The Intel x64 supports direct,

indirect, indexing and scaling

 So, the Intel is very versatile
in how it can access memory

 This is typical of CISC-ish

architectures

Effective Addresses

Fall 2023 Sacramento State - Cook - CSc 35 23

 Processors have the ability to
create the effective address by
combining data

 How it works:

• starts with a base address

• then adds a value (or values)

• finally, uses this temporary value
as the actual address

Effective Addresses

Fall 2023 Sacramento State - Cook - CSc 35 24

 Using the addresses stored in
memory, registers, etc… is
useful in programs

 Often programs contain groups
of data

• fields in an abstract data type

• elements in an array

• entries in a large table etc…

19 20

21 22

23 24

5

 Base-address is the initial address

 Displacement (aka offset) is a constant
(immediate) that is added to the address

 Index is a register added to the address

 Scale used to multiply the index before adding it to
the address

Terminology

Fall 2023 Sacramento State - Cook - CSc 35 25

displacement + base + (index × scale)

x64 Effective Address Formula

Fall 2023 Sacramento State - Cook - CSc 35 26

Any Register

1, 2, 4 or 8

Any Register

Signed Constant

Behind the Scenes…

 But wait, doesn't that formula look familiar?

 The addressing term "scale" is basically equivalent to "size" in
this example

 Addressing and arrays work together flawlessly

start address + (index × size)

Fall 2023 Sacramento State - Cook - CSc 35 27

 Intel Notation (Microsoft actually created it) allows

you to specify the full equation

 The notation is very straight forward and mimics
the equation used to compute the effective address

 Parts of the equation can be omitted, and the

assembler will understand

Addressing Notation in Assembly

Fall 2023 Sacramento State - Cook - CSc 35 28

[Base + Index * Scale + Displacement]

Intel Notation

Register

Register

Signed constant

1, 2, 4, 8

Fall 2023 Sacramento State - Cook - CSc 35 29

Java EquivalentSyntaxMode

valuevalueImmediate

registerregisterRegister

Memory[label]labelDirect

Memory[label + reg][label + reg]Direct Indexed

Memory[reg][reg]Indirect

Memory[reg + reg][reg + reg]Indirect Indexed

Memory[reg + reg × scale][reg + reg * scale]Indirect Indexed Scale

Fall 2023 Sacramento State - Cook - CSc 35 30

Notation (reg = register)

25 26

27 28

29 30

6

Addressing Notation in Assembly

 When you write an assembly instruction…

• you specify all 4 four addressing features

• however, notation fills in the "missing" items

 For example: for direct addressing…

• Displacement Address of the data

• Base Not used

• Index Not used

• Scale 1, irrelevant without an Index

Fall 2023 Sacramento State - Cook - CSc 35 31

Indexing Examples

Fall 2023 Sacramento State - Cook - CSc 35 32

 The following

examples use

addressing modes
modify an ASCII buffer

 Let's assume that the
start of the buffer Talk

is 5000

48 H

65 e

6C l

6C l

6F o

5000

5001

5002

5003

5004

Talk = 5000

48 H

65 e

6C l

6C l

6F o

5000

5001

5002

5003

5004

Talk = 5000

mov rdi, 1

movb [Talk + rdi], 33

Example: Direct Index

Using the rdi

register for

indexing, but you
can use any

register

ASCII 33 !

33 !

Fall 2023 Sacramento State - Cook - CSc 35 33

Talk = 5000

mov rdi, 1

movb [Talk + rdi * 2], 33

Example: Direct Index (Scale 2)

Fall 2023 Sacramento State - Cook - CSc 35 34

48 H

65 e

6C l

6C l

6F o

5000

5001

5002

5003

5004

33 !

Talk = 5000

mov rdi, 1

movb [Talk + rdi * 4], 33

Example: Direct Index (Scale 4)

Fall 2023 Sacramento State - Cook - CSc 35 35

48 H

65 e

6C l

6C l

6F o

5000

5001

5002

5003

5004 33 !

Talk = 5000

lea rax, Talk

movb [rax], 33

Example: Register Indirect

Indirect.

Base is rax

Fall 2023 Sacramento State - Cook - CSc 35 36

48 H

65 e

6C l

6C l

6F o

5000

5001

5002

5003

5004

33 !

31 32

33 34

35 36

7

Talk = 5000

lea rax, Talk

mov rdi, 1

movb [rax + rdi], 33

Example: Register Indirect Index

Base Index

Fall 2023 Sacramento State - Cook - CSc 35 37

48 H

65 e

6C l

6C l

6F o

5000

5001

5002

5003

5004

33 !

Talk = 5000

lea rax, Talk

mov rdi, 1

movb [rax + rdi * 2], 33

Ex: Register Indirect Index (Scale 2)

Scale

Fall 2023 Sacramento State - Cook - CSc 35 38

48 H

65 e

6C l

6C l

6F o

5000

5001

5002

5003

5004

33 !

48 H

65 e

6C l

6C l

6F o

5000

5001

5002

5003

5004

Talk = 5000

lea rax, Talk

mov rdi, 1

movb [rax + rdi * 4], 33

Ex: Register Indirect Index (Scale 4)

Fall 2023 Sacramento State - Cook - CSc 35 39

33 !

Herky Direct Indexed Example

LDR r4, [Name + r5 * 8]

Fall 2023 Sacramento State - Cook - CSc 35 40

LDR reg,[imm+idx] r4 20 = 1 byte 42

1011 0 11 1 1010 0 10 1 0010 0 00 0 0100 1 11 1

B 5 4 27 3 0 A

23 = 8 bytesr5

Assuming Name = 42

Herky Indirect Indexed Example

LDR r4, [r7 + r5 * 8]

Fall 2023 Sacramento State - Cook - CSc 35 41

LDR reg,[reg+idx] r4 r7

1101 0 11 0 1010 0 10 1 0010 0 11 1

B 5 46 3 7

23 = 8 bytesr5

Tables

How to Organize Data

37 38

39 40

41 42

8

 In assembly, you have full

control of memory

 You can take advantage of

these to create tables

 They can contain any data –

from integers, to characters,

to addresses

Tables

Fall 2023 Sacramento State - Cook - CSc 35 43

H 0

E 1

L 2

L 3

O 4

Greet

mov rdi, 1

movb ah, [Greet + rdi]

Accessing Each element

Use register to hold table index

Fall 2023 Sacramento State - Cook - CSc 35 44

 Tables can contain anything!

 Often, they are used to store
integers & addresses (8 bytes
on a 64-bit system)

 Just make sure to use the

scale feature!

Tables of Integers

Fall 2023 Sacramento State - Cook - CSc 35 45

Years:

.quad 1776

.quad 1783

.quad 1846

.quad 1850

.quad 1947

Table of Long Integers

8 Bytes each

Fall 2023 Sacramento State - Cook - CSc 35 46

Years:

.quad 1776

.quad 1783

.quad 1846

.quad 1850

.quad 1947

Assuming Years is 6000

17766000

17836008

18466016

18506024

19476032

Fall 2023 Sacramento State - Cook - CSc 35 47

17766000

17836008

18466016

18506024

19476032

mov rdi, 1

mov rcx, [Years + rdi * 8]

Assuming Years is 6000

Table index 1

Note the scale!

Fall 2023 Sacramento State - Cook - CSc 35 48

43 44

45 46

47 48

9

Sutter:

.ascii "John Sutter\0"

Marshal:

.ascii "James Marshal\0"

Names:

.quad Sutter

.quad Marshal

Table of Addresses. Assume Names is 3000

Fall 2023 Sacramento State - Cook - CSc 35 49

Sutter (address)3000

Marshal (address)3008

Sutter (address)3000

Marshal (address)3008

mov rdi, 1

mov rax, [Names + rdi * 8]

call PrintString

Assuming Names is 3000

Note: mov is used. We want the data from

the table (which is an address)

Fall 2023 Sacramento State - Cook - CSc 35 50

Buffer Overflow

With Great Power

Comes Great Responsibility

 Operating systems protect

programs from having their

memory / code damaged by
other programs

 However…operating systems
don't protect programs from

damaging themselves

Buffer Overflow

Fall 2023 Sacramento State - Cook - CSc 35 52

Buffers & Programs

 In memory, a running program's data is often

stored next to its instructions

 This means…

• if the end of a buffer of exceeded, the program can be

read/written

• this is a common hacker technique to modify a program

while it is running!

Fall 2023 Sacramento State - Cook - CSc 35 53

.data

Kitty:

.ascii "Cat"

Puppy:

.ascii "Dog"

.text

.global _start

_start:

Example Program

Fall 2023 Sacramento State - Cook - CSc 35 54

43 C

61 a

74 t

44 D

6F o

Kitty

67 g

Puppy

...

_start

Start of program

49 50

51 52

53 54

10

Buffer Overflow – How it Works

Computer Memory

Program Buffer

Data

Program

Not used

Fall 2023 Sacramento State - Cook - CSc 35 55

 It is possible to store too

much information – resulting

in a buffer overflow

 The extra bytes will overwrite

part of the running program –
changing it!

Buffer Overflow

Fall 2023 Sacramento State - Cook - CSc 35 56

Buffer Overflow – How it Works

Overwritten

program

Overflow of data

Fall 2023 Sacramento State - Cook - CSc 35 57

Computer Memory

 It is possible to accidentally
change data stored in the
different buffers

 In assembly, you have full
control over your allocated
memory

 With great power comes
great responsibility

Bad Indexing

Fall 2023 Sacramento State - Cook - CSc 35 58

.intel_syntax noprefix

.data

Kitty:

.ascii "Cat\0"

Puppy:

.ascii "Dog\0"

.text

.global _start

_start:

mov rdi, 4

movb [Kitty + rdi], 72

Wrong Buffer Changed

4 bytes. Character

indexes from 0 to 3

72 is ASCII 'H'

In hex it's 48

Fall 2023 Sacramento State - Cook - CSc 35 59

.intel_syntax noprefix

.data

Kitty:

.ascii "Cat\0"

Puppy:

.ascii "Dog\0"

.text

.global _start

_start:

mov rdi, 4

movb [Kitty + rdi], 72

Wrong Buffer Changed

Fall 2023 Sacramento State - Cook - CSc 35 60

43 C

61 a

74 t

44 D

6F o

Kitty

67 g

00

Puppy

00

55 56

57 58

59 60

11

43 C

61 a

74 t

44 D

6F o

Kitty

67 g

00

Puppy

00

.intel_syntax noprefix

.data

Kitty:

.ascii "Cat\0"

Puppy:

.ascii "Dog\0"

.text

.global _start

_start:

mov rdi, 4

movb [Kitty + rdi], 72

Wrong Buffer Changed

48 H

Fall 2023 Sacramento State - Cook - CSc 35 61

43 C

61 a

74 t

44 D

6F o

Kitty

67 g

00

Puppy

00

.intel_syntax noprefix

.data

Kitty:

.ascii "Cat\0"

Puppy:

.ascii "Dog\0"

.text

.global _start

_start:

mov rdi, 4

movb [Kitty + rdi], 72

Wrong Buffer Changed

48 H

Fall 2023 Sacramento State - Cook - CSc 35 62

Endianness

The "proper" order of things

 On a 64-bit system, each
word consists of 8 bytes

 So, when any 64-bit value is
stored in memory, each of
those 8 bytes must be stored

 However, question remains:
What order do we store
them?

So Many Bytes…

Fall 2023 Sacramento State - Cook - CSc 35 64

Example Unsigned Integer (4 Byte)

F1 74 DC 46

Least significant Byte

(LSB)

1,188,852,977

Most significant Byte

(MSB)

Fall 2023 Sacramento State - Cook - CSc 35 65

 Do we store the least-significant byte (LSB) first, or

the most-significant (MSB)?

 As long as a system always follows the same

format, then there are no problems

 … but different system use different approaches

So Many Bytes…

Fall 2023 Sacramento State - Cook - CSc 35 66

61 62

63 64

65 66

12

 Big-Endian approach

• store the MSB first

• used by Motorola & PowerPC

 Little-Endian approach

• store the LSB first

• used by Intel

Big Endian vs. Little Endian

Fall 2023 Sacramento State - Cook - CSc 35 67

Big Endian vs. Little Endian

0

1

2

3

Big Endian

46

DC

74

F1

0

1

2

3

Little Endian

F1

74

DC

46

Fall 2023 Sacramento State - Cook - CSc 35 68

F1 74 DC 46

Value:

.quad 74

Assuming Value is located at 2000

Little Endian

Fall 2023 Sacramento State - Cook - CSc 35 69

4A

00

00

00

00

2000

00

2001

2002

2003

2004

2005

002006

002007

Least

Significant Byte

(LSB)

 There is a problem...

if two systems use different

formats, data will be
interpreted incorrectly!

 If how the read differs from
how it is stored, the data will

be mangled

No "End" to Problems

Fall 2023 Sacramento State - Cook - CSc 35 70

 For example:

• a little-endian system reads a
value stored in big-endian

• a big-endian system reads a
value stored in little-endian

 Programmers must be
conscience of this whenever
binary data is accessed

No "End" to Problems

Fall 2023 Sacramento State - Cook - CSc 35 71

 So, whenever data is read

from secondary storage, you

cannot assume it will be in
your processor's format

 This is compounded by file
formats (gif, jpeg, mp3, etc…)

which are also inconsistent

No "End" to Problems

Fall 2023 Sacramento State - Cook - CSc 35 72

67 68

69 70

71 72

13

Example File Format Endianness

Fall 2023 Sacramento State - Cook - CSc 35 73

Adobe Photoshop Big Endian

File Format Endianness

Windows Bitmap (.bmp) Little Endian

GIF Little Endian

JPEG Big Endian

MP4 Big Endian

ZIP file Little Endian

 So, what is the correct and

superior format?

 Is it Intel (little endian)?

 …or the PowerPC (big
endian) correct?

So… who is correct?

Fall 2023 Sacramento State - Cook - CSc 35 74

 In reality neither side is

superior

 Both formats are equally

correct

 Both have minor advantages

in assembly… but nothing

huge

So… who is correct?

Fall 2023 Sacramento State - Cook - CSc 35 75 Fall 2023 Sacramento State - Cook - CSc 35 76

Gulliver's Travels

73 74

75 76

