
1

Control Logic

Part 6

Intel x86 Jump

Instructions

Fly over code

 Unlike high-level languages,

processors don't have fancy

expressions or blocks

 Programs are controlled by

jumping over blocks of code

Operations: Program Flow Control

Spring 2024 Sacramento State - Cook - CSc 35 3

 The processor moves the

instruction pointer (where

your program is running in
memory) to a new address
and execution continues

Operations: Program Flow Control

Spring 2024 Sacramento State - Cook - CSc 35 4

Types of Jumps: Unconditional

Spring 2024 Sacramento State - Cook - CSc 35 5

 Unconditional jumps simply
transfers the running program
to a new address

 Basically, it just "gotos" to a
new line

 These are used extensively to
recreate the blocks we use in
3GLs (like Java)

JMP address

Instruction: Jump

Usually a label – a constant

that holds an address

Spring 2024 Sacramento State - Cook - CSc 35 6

1 2

3 4

5 6

2

.intel_syntax noprefix

.data

message:

.ascii "I'm getting dizzy!\n\0"

.text

.global _start

_start:

lea rax, message

Loop:

call PrintString

jmp Loop

Infinite Loop

Spring 2024 Sacramento State - Cook - CSc 35 7

_start:

lea rax, message

Loop:

call PrintString

jmp Loop

Infinite Loop

Spring 2024 Sacramento State - Cook - CSc 35 8

Conditional Jumps

Spring 2024 Sacramento State - Cook - CSc 35 9

 Conditional jumps (aka
branching) will only jump if a
certain condition is met

 What happens

• processor jumps if and only if a
specific status is set

• otherwise, it simply continues
with the next instruction

Instruction: Compare

Spring 2024 Sacramento State - Cook - CSc 35 10

 Performs a comparison

operation between two

arguments

 The result of the comparison

is used for conditional jumps

 We will get into how this

works a tad later

CMP arg1 , arg2

Instruction: Compare

Immediate, Register,

Memory

Register, Memory

Spring 2024 Sacramento State - Cook - CSc 35 11

Conditional Jumps

Spring 2024 Sacramento State - Cook - CSc 35 12

 x86 contains a large number

of conditional jump

instructions

 x86 assembly has several

names for the same
instruction – which adds
readability

7 8

9 10

11 12

3

DescriptionJump

Jump Equal JE

Jump Not equalJNE

Jump Greater thanJG

Jump Greater than or EqualJGE

Jump Less thanJL

Jump Less than or EqualJLE

Spring 2024 Sacramento State - Cook - CSc 35 13

Conditional Jumps

_start:

cmp rax, 13

je Equal

...

Equal:

...

Conditional Jump Example

rax = 13?

Spring 2024 Sacramento State - Cook - CSc 35 14

_start:

mov rax, 42

cmp rax, 13

jge Bigger

...

Bigger:

add rax, 5

Conditional Jump Example

rax >= 13?

Spring 2024 Sacramento State - Cook - CSc 35 15

If Statements on

the x86

How to we conditionally execute code?

 High-level programming
language have easy to use If-
Statements

 However, processors handle
all branching logic using
jumps

 You basically jump over true
and else blocks

If Statements in Assembly

Spring 2024 Sacramento State - Cook - CSc 35 17

If Statements in Assembly

 Converting from an If Statement to assembly is

easy

 Let's look at If Statements…

• block is only executed if the expression is true

• so, if the expression is false your program will skip over

the block

• this is a jump…

Spring 2024 Sacramento State - Cook - CSc 35 18

13 14

15 16

17 18

4

rax = 18;

if (rax >= 21)

{

//true part

}

rbx = 12;

If Statement jumps over code

False

Spring 2024 Sacramento State - Cook - CSc 35 19

Converting an If Statement

 Compare the two values

 If the result is false …

• then jump over the true block

• you will need label to jump to

 To jump on false, reverse your logic

• a < b not (a >= b)

• a >= b not (a < b)

Spring 2024 Sacramento State - Cook - CSc 35 20

 Following examples use very

generic label names

 In your program, each label

you create must be unique

 So, please don't think that

each label (as it is typed) is

"the" label you need to use

Please Note…

Spring 2024 Sacramento State - Cook - CSc 35 21

if (rax >= 21)

{

//true block

}

//end

Converting an If Statement

Greater-Than or

Equal
So, jump on

Less-Than

Spring 2024 Sacramento State - Cook - CSc 35 22

cmp rax, 21

jl End

#true block

End:

Jump over true part

Branch when false.

JL (Jump Less
Than) is the

opposite of JGE

Spring 2024 Sacramento State - Cook - CSc 35 23

cmp rax, 21

jl End

#true block

End:

Jump over true part

Jumps over true part

Spring 2024 Sacramento State - Cook - CSc 35 24

19 20

21 22

23 24

5

Else Clause

 The Else Clause is a tad more complex

 You need to have a true block and a false block

 Like before…

• you must jump over instructions

• just remember… the program will continue with the next

instruction unless you jump!

Spring 2024 Sacramento State - Cook - CSc 35 25

if (rax >= 21)

{

//true block

}

else

{

//false block

}

//end

Else Clause

Spring 2024 Sacramento State - Cook - CSc 35 26

cmp rax, 21

jl Else

#true block

jmp End

Else:

#false block

End:

Jump over true part

Spring 2024 Sacramento State - Cook - CSc 35 27

Jump to false block

False block flows down

to End

cmp rax, 21

jl Else

#true block

jmp End

Else:

#false block

End:

Jump over true part

Spring 2024 Sacramento State - Cook - CSc 35 28

If we run the true block, we have to

jump over the false block

Alternative Approach

Spring 2024 Sacramento State - Cook - CSc 35 29

 In these examples, I put the

False Block first and used

inverted logic for the jump

 You can construct If
Statements without inverting
the conditional jump, but the

format is layout is different

cmp rax, 21

jge Then

jmp End

Then:

#true block

End:

If Statement – No Else

Jumps to true block

Spring 2024 Sacramento State - Cook - CSc 35 30

25 26

27 28

29 30

6

cmp rax, 21

jge Then

jmp End

Then:

#true block

End:

If Statement – No Else

Jump to end if false (it

didn't jump with JGE)

Spring 2024 Sacramento State - Cook - CSc 35 31

cmp rax, 21

jge Then

#false block

jmp End

Then:

#true block

End:

If Statement with Else

Notice that this is identical

to the last slide – the false
block is just empty

Spring 2024 Sacramento State - Cook - CSc 35 32

3 Rules of Engineering

Spring 2024 Sacramento State - Cook - CSc 35 33

1. If it works… it works!

2. If it ain't broke… don't fix it!

3. Reread rules 1 and 2 you

moron!

While Loops

Doing the same thing again and again

… and again

While Statement

Spring 2024 Sacramento State - Cook - CSc 35 35

 Processors do not have While
Statements – just like If
Statements

 Looping is performed much like
an implementing an If
Statement

 A While Statement is, in fact,
the same thing as an If
Statement

Converting a While Statement

 To create a While Statement

• start with an If Statement and…

• add an unconditional jump at the end of the block that jumps
to the beginning

 You will "branch out" of an infinite loop

 Structurally, this is almost identical to what you did
before

 However, you do need another label :(

Spring 2024 Sacramento State - Cook - CSc 35 36

31 32

33 34

35 36

7

while (rax < 21)

{

//true block

}

//end

Converting an While Statement

Less-Than.

So, jump on
Greater-Than or Equal

Spring 2024 Sacramento State - Cook - CSc 35 37

While:

cmp rax, 21

jge End

#true block

jmp While

End:

Converting an While Statement

Loop after

block executes

Spring 2024 Sacramento State - Cook - CSc 35 38

While:

cmp rax, 21

jge End

#true block

jmp While

End:

Converting an While Statement

Escape infinite

loop

Spring 2024 Sacramento State - Cook - CSc 35 39

Alternative Approach

 Before, we created an If
Statement by inverting the
branch logic (jump on false)

 You can, also implement a
While Statement without
inverting the logic

 Either approach is valid – use
what you think is best

Spring 2024 Sacramento State - Cook - CSc 35 40

while (rax < 21)

{

//true block

}

//end

Alternative Approach

Spring 2024 Sacramento State - Cook - CSc 35 41

While:

cmp rax, 21

jl Do

jmp End

Do:

#true block

jmp While

End:

Alternative Approach

Jumps to Do

Block

Spring 2024 Sacramento State - Cook - CSc 35 42

37 38

39 40

41 42

8

Alternative Approach

While:

cmp rax, 21

jl Do

jmp End

Do:

#true block

jmp While

End:

jl didn't jump, so

jump out of the
loop

Spring 2024 Sacramento State - Cook - CSc 35 43

While:

cmp rax, 21

jl Do

jmp End

Do:

#true block

jmp While

End:

Alternative Approach

Repeat the loop

Spring 2024 Sacramento State - Cook - CSc 35 44

Do Loops

Post-Test While Loops

Do Loops

Spring 2024 Sacramento State - Cook - CSc 35 46

 Programming languages also

support post-test loop

statements

 Many programming

languages use the keyword
"repeat" or "do"

 Easier than While Statements

do

{

//true block

}

while (rax < 21);

//end

Converting Do Loops

We jump UP when TRUE

Spring 2024 Sacramento State - Cook - CSc 35 47

Do:

#true block

cmp rax, 21

jl Do

Converting Do Loops

Positive logic

Spring 2024 Sacramento State - Cook - CSc 35 48

43 44

45 46

47 48

9

 You can also implement Do

Loops using negative logic

 But it requires a few an extra
label and jump statement

Alternative Approach

Spring 2024 Sacramento State - Cook - CSc 35 49

Do:

#true block

cmp rax, 21

jge End

jmp Do

End:

Alternative Approach

Negative

logic

Spring 2024 Sacramento State - Cook - CSc 35 50

Do:

#true block

cmp rax, 21

jge End

jmp Do

End:

Alternative Approach

Infinite loop

Spring 2024 Sacramento State - Cook - CSc 35 51

Addressing &

Loops

They were made for each other … literally

 When you use arrays in Java,

often the index is a variable

 This allows you to use a For

Loop to analyze very element

in the array

 This is more common than

you think in assembly

Addressing & Loops

Spring 2024 Sacramento State - Cook - CSc 35 53

 So, processors allow a

register to be used as an

index

 This allows you to:

• copy strings (copying arrays)

• search through a list

• and much more…

Addressing & Loops

Spring 2024 Sacramento State - Cook - CSc 35 54

49 50

51 52

53 54

10

.intel_syntax noprefix

.data

Greet:

.ascii "HELLO"

.text

.global _start

_start:

For Loop: 0 to 4 - Before

Spring 2024 Sacramento State - Cook - CSc 35 55

H 0

E 1

L 2

L 3

O 4

Greet

mov rax, 0

Loop:

cmp rax, 4

jg End

movb [Greet + rax], 33

add rax, 1

jmp Loop

End:

For Loop: 0 to 4

Spring 2024 Sacramento State - Cook - CSc 35 56

H 0

E 1

L 2

L 3

O 4

Greet

! character

H 0

E 1

L 2

L 3

O 4

Greet

mov rax, 0

Loop:

cmp rax, 4

jg End

movb [Greet + rax], 33

add rax, 1

jmp Loop

End:

For Loop: 0 to 4 - After

!

!

!

!

!

Spring 2024 Sacramento State - Cook - CSc 35 57

Switch

Statements on

the x86

Reason for the C, Java, and C# design

 You might have noticed the

strange behavior of Switch

statements in C, Java, and
C#

 Java and C# inherited their
behavior from C

Switch Statements on the x86

Spring 2024 Sacramento State - Cook - CSc 35 59

 C, in turn, was designed for

embedded systems

 Language creates very

efficient assembly code

 The Switch Statement

converts easily to efficient

code

Switch Statements on the x86

Spring 2024 Sacramento State - Cook - CSc 35 60

55 56

57 58

59 60

11

 It is very efficient because…

• it is restricted to integer constants

• once a case is matched, no others are checked

• they can fall through to match multiple values

 So, how?

• start of the statement sets up just 1 register

• compared to each "case" constant

• jumps to a label created for each

Switch Statement

Spring 2024 Sacramento State - Cook - CSc 35 61

switch (integer)

{

case value :

Statements

default:

Statements

}

Switch Statement Syntax

integer expression

You can have as many
of these as needed

Executed if nothing
matched

Spring 2024 Sacramento State - Cook - CSc 35 62

switch (month)

{

case 10:

Halloween();

case 11:

Thanksgiving();

default:

Christmas();

}

C/Java Code

Spring 2024 Sacramento State - Cook - CSc 35 63

mov rax, month

cmp rax, 10

je case_10

cmp rax, 11

je case_11

jmp default

case_10:

call Halloween

case_11:

call Thanksgiving

default:

call Christmas

Assembly Code

Spring 2024 Sacramento State - Cook - CSc 35 64

mov rax, month

cmp rax, 10

je case_10

cmp rax, 11

je case_11

jmp default

case_10:

call Halloween

case_11:

call Thanksgiving

default:

call Christmas

Assembly Code

Jump header

Spring 2024 Sacramento State - Cook - CSc 35 65

Assembly Code: Jump Header

mov rax, month

cmp rax, 10

je case_10

cmp rax, 11

je case_11

jmp default

case 10:

case 11:

default:

Spring 2024 Sacramento State - Cook - CSc 35 66

61 62

63 64

65 66

12

Assembly Code

mov rax, month

cmp rax, 10

je case_10

cmp rax, 11

je case_11

jmp default

case_10:

call Halloween

case_11:

call Thanksgiving

default:

call Christmas

Case Body

Spring 2024 Sacramento State - Cook - CSc 35 67

case_10:

call Halloween

case_11:

call Thanksgiving

default:

call Christmas

Assembly Code: The Case Body

Each "falls

through". They
are just labels!

Spring 2024 Sacramento State - Cook - CSc 35 68

10

Halloween

Thanksgiving

Christmas

Fall-Through Labels

Spring 2024 Sacramento State - Cook - CSc 35 69

Break Statement

 Even in the last example, we still fall-through to the

default

 The "Break" Statement is used exit a case

 Semantics

• simply jumps to a label after the last case

• so, break converts directly to a single jump

Spring 2024 Sacramento State - Cook - CSc 35 70

switch (month)

{

case 10:

Halloween();

break;

case 11:

Thanksgiving();

break;

default:

Christmas();

}

Java Code

Let's jump to the

end

Spring 2024 Sacramento State - Cook - CSc 35 71

case_10:

call Halloween

jmp End

case_11:

call Thanksgiving

jmp End

default:

call Christmas

End:

Assembly Code: The Cases

Break jumps to

the end

Spring 2024 Sacramento State - Cook - CSc 35 72

67 68

69 70

71 72

13

 The fallthrough behavior of C was designed for a

reason

 It makes it easy to combine "cases" – make a

Switch Statement match multiple values

 … and keeps the same efficient assembly code

When Fallthrough Works

Spring 2024 Sacramento State - Cook - CSc 35 73

switch (number)

{

case 2:

case 3:

case 5:

case 7:

result = True;

break;

default:

result = False;

}

Java Code: Primes from 1 to 10

Match Multiple

Spring 2024 Sacramento State - Cook - CSc 35 74

Primes: Jump Header

mov rax, number

cmp rax, 2

je case_2

cmp rax, 3

je case_3

cmp rax, 5

je case_5

cmp rax, 7

je case_7

jmp default

These are our primes

Spring 2024 Sacramento State - Cook - CSc 35 75

case_2:

case_3:

case_7:

case_9:

movq result, 1

jmp End

default:

movq result, 0

Assembly Code: The Cases

All these labels will be

at the same address.
You, of course, would

write prettier code.

Spring 2024 Sacramento State - Cook - CSc 35 76

73 74

75 76

