
1

Arithmetic Logic

Unit

Part 7

Adding Binary

Integers

1 + 1 = 10

Adding Binary Integers

Spring 2024 Sacramento State - Cook - CSc 35 3

 Computer's add binary
numbers the same way that
we do with decimal

 Columns are aligned, added,
and "1's" are carried to the
next column

 In computer processors, this
component is called an adder

Adding Base 10 Numbers

+
1

1

8

2

7

7

2

3

2

1

56 0

1

Spring 2024 Sacramento State - Cook - CSc 35 4

Adding Binary Example

+
1

1

1

1

1

0

0

0

1

1

01 0

1

0

1

1

1

1

0

0

0

001 1

1 1

169

118

51

Spring 2024 Sacramento State - Cook - CSc 35 5

1

Negative Binary

Integers

Have a positive attitude about negatives

1 2

3 4

5 6

2

Negative Binary Numbers

Spring 2024 Sacramento State - Cook - CSc 35 7

 When we write a negative

number, we generally use a

"-" as a prefix character

 However, binary numbers can

only store ones and zeros

Negative Binary Numbers

Spring 2024 Sacramento State - Cook - CSc 35 8

 So, how we store a negative

a number?

 When a number can

represent both positive and

negative numbers, it is called
a signed integer

 Otherwise, it is unsigned

 One approach is to use the most significant bit

(msb) to represent the negative sign

 If positive, this bit will be a zero

 If negative, this bit will be a 1

 This gives a byte a range of -127 to 127 rather
than 0 to 255

Signed Magnitude

Spring 2024 Sacramento State - Cook - CSc 35 9

Signed Magnitude

0110 1011

most significant bit

Value

Spring 2024 Sacramento State - Cook - CSc 35 10

Signed Magnitude: 13 and -13

0000 1011

Positive

001

Negative

0 1011

Spring 2024 Sacramento State - Cook - CSc 35 11

 When two numbers are added, the system needs
to check and sign bits and act accordingly

 For example:

• if both numbers are positive, add values

• if one is negative subtract it from the other

• etc…

 There are also rules for subtracting

Signed Magnitude Drawback #1

Spring 2024 Sacramento State - Cook - CSc 35 12

7 8

9 10

11 12

3

if (x == +0 || x == -0)

Signed Magnitude Drawback #2

Spring 2024 Sacramento State - Cook - CSc 35 13

 Also, signed magnitude also can store a positive and
negative version of zero

 Yes, there are two zeroes!

 Imagine having to write Java code like…

Oh noes! Two zeros?

0000 0000

+0

0001 0000

-0

Spring 2024 Sacramento State - Cook - CSc 35 14

 Rather than use a sign bit, the value can be made
negative by inverting each bit

• each 1 becomes a 0

• each 0 becomes a 1

 Result is a "complement" of the original

 This is logically the same as subtracting the
number from 0

1's Complement

Spring 2024 Sacramento State - Cook - CSc 35 15

 Advantages over signed magnitude

• very simple rules for adding/subtracting

• numbers are simply added:

5 - 3 is the same as 5 + -3

 Disadvantages

• positive and negative zeros still exist

• so, it's not a perfect solution

Advantages / Disadvantages

Spring 2024 Sacramento State - Cook - CSc 35 16

1's Complement: 13 and -13

0000

Positive

1111 0100

Negative

1011

Spring 2024 Sacramento State - Cook - CSc 35 17

1's Complement Has Two Zeros

0000 0000

+0

111

-0

11 11 1

Spring 2024 Sacramento State - Cook - CSc 35 18

13 14

15 16

17 18

4

2's Complement

Spring 2024 Sacramento State - Cook - CSc 35 19

 Practically all computers use
2's Complement

 Similar to 1's complement, but
after the number is inverted, 1 is
added to the result

 Logically the same as:

• subtracting the number from 2n

• where n is the total number of bits
in the integer

 Since negatives are subtracted from 2n

• they can simply be added

• the extra carry 1 (if it exists) is discarded

• this simplifies the hardware considerably since the processor
only has to add

 The +1 for negative numbers…

• makes it so there is only one zero

• values range from -128 to 127

2's Complement Advantages

Spring 2024 Sacramento State - Cook - CSc 35 20

2's Complement: 13 and -13

0000

1111 1100

1011

Add 1

Positive

Negative

Spring 2024 Sacramento State - Cook - CSc 35 21

Just One Zero!

0000 0000

0

111

-1

11 11 1

Spring 2024 Sacramento State - Cook - CSc 35 22

Adding 2's Complement

+

0

1

11 1

1

010 0

1

78

1111 1100

1010 1101

111

91

-13

Spring 2024 Sacramento State - Cook - CSc 35 23

Unsigned or Signed?

Spring 2024 Sacramento State - Cook - CSc 35 24

 In reality, processors don't

know (or care) if a number if

unsigned or signed

 The hardware works the

same either way

 It's your responsibility to keep

track if it's signed/unsigned

19 20

21 22

23 24

5

It's Your Responsibility

Spring 2024 Sacramento State - Cook - CSc 35 25

 In many cases, you must use
the correct instruction - based
on whether you are treating
the data as signed or
unsigned

 With great programming
power comes great
responsibility Jumping of the instruction pointer

Relative

Addressing

Relative Addressing

Spring 2024 Sacramento State - Cook - CSc 35 27

 In relative addressing, a

value is added to a instruction

pointer (e.g. program counter)

 This allows access a fixed

number of bytes up or down
from the instruction pointer

Relative Addressing

 Often used in conditional jump statements

• jumps are often short – not a large number of

instructions

• so, the instruction only stores the value to add to the

program counter

• practically all processors us this approach

 Also used to access local data – load/store

Spring 2024 Sacramento State - Cook - CSc 35 28

Relative Addressing Advantages

 The instruction can just store the difference (in

bytes) from the current instruction address

 It takes less storage than a full 64-bit address

 It also allows a program to be stored anywhere in
memory – and it will still work!

Spring 2024 Sacramento State - Cook - CSc 35 29

Herky Compare Register, Register

CMP r4, r5

Spring 2024 Sacramento State - Cook - CSc 35 30

CMP reg,reg r4 r5

0011 0 10 0 0000 0 00 0 0010 0 01 1

C 0 42 0 5

25 26

27 28

29 30

6

Herky Compare Register, Immediate

CMP r4, 47

Spring 2024 Sacramento State - Cook - CSc 35 31

CMP reg, imm r4 1 byte # 47

0011 0 10 1 0000 0 00 0 0010 0 00 0 0100 1 11 1

C 0 4 23 0 0 F

Herky Call Unconditional Jump

Spring 2024 Sacramento State - Cook - CSc 35 32

JMP imm 1 byte # 196 in decimal

0110 1 00 1 0000 0 00 0 1111 0 00 0 0011 0 01 0

6 0 F C9 0 0 4

F = Always

0A00Address of this

instruction Target Address.

C4 difference

JMP 0AC4

Herky Call Conditional Jump

Spring 2024 Sacramento State - Cook - CSc 35 33

JMP imm 1 byte # 75 in decimal

0110 1 00 1 0000 0 00 0 1010 0 00 0 0010 1 10 1

6 0 5 49 0 0 B

5 = JLE

1C00Address of this

instruction Target Address.

4B difference

JLE 1C4B

Multiplying Binary

Numbers

11 × 11 = 1001

Multiplying Binary Numbers

Spring 2024 Sacramento State - Cook - CSc 35 35

 Many processors today
provide complex
mathematical instructions

 However, the processor only
needs to know how to add

 Historically, multiplication was
performed with successive
additions

 Let's say we have two variables: A and B

 Both contain integers that we need to multiply

 Our processor can only add (and subtract using 2's

complement)

 How do we multiply the values?

Multiplying Scenario

Spring 2024 Sacramento State - Cook - CSc 35 36

31 32

33 34

35 36

7

Multiplying: The Bad Way

Spring 2024 Sacramento State - Cook - CSc 35 37

 One way of multiplying the

values is to create a For Loop

using one of the variables – A
or B

 Then, inside the loop,
continuously add the other

variable to a running total

total = 0;

for (i = 0; i < A; i++)

{

total += B;

}

Multiplying: The Bad Way

Spring 2024 Sacramento State - Cook - CSc 35 38

Multiplying: The Bad Way

Spring 2024 Sacramento State - Cook - CSc 35 39

 If A or B is large, then it could
take a long time

 This is incredibly inefficient

 Also, given that A and B could
contain drastically different
values – the number of
iterations would vary

 Required time is not constant

Multiplying: The Best Way

Spring 2024 Sacramento State - Cook - CSc 35 40

 Computers can multiply by
using long multiplication – just
like you do

 Number of additions is fixed to
8, 16, 32, 64 depending on the
size of the integer

 The following example
multiplies 2 unsigned 4-bit
numbers

Unsigned Integer: 13 × 10

1011

× 0101

+

0000

Spring 2024 Sacramento State - Cook - CSc 35 41

Unsigned Integer: 13 × 10

1011

× 0101

+

0000

1011

Spring 2024 Sacramento State - Cook - CSc 35 42

37 38

39 40

41 42

8

Unsigned Integer: 13 × 10

1011

× 0101

+

0000

0000

1011

Spring 2024 Sacramento State - Cook - CSc 35 43

Unsigned Integer: 13 × 10

1011

× 0101

+

0000

0000

1011

1011

Spring 2024 Sacramento State - Cook - CSc 35 44

Unsigned Integer: 13 × 10

1011

× 0101

+

0000

0000

1011

1011

01000001130

Spring 2024 Sacramento State - Cook - CSc 35 45

 When two numbers are multiplied, the product will
have twice the number of digits

 Examples:

• 8-bit × 8-bit 16-bit

• 16-bit × 16-bit 32-bit

• 32-bit × 32-bit 64-bit

• 64-bit × 64-bit 128-bit

Multiplication Doubles the Bit-Count

Spring 2024 Sacramento State - Cook - CSc 35 46

 So, how do we store the result?

 It is often too large to fit into any single existing
register

 Processors can…

• fit the result in the original bit-size (and raise an overflow
if it does not fit)

• …or store the new double-sized number

Multiplication Doubles the Bit-Count

Spring 2024 Sacramento State - Cook - CSc 35 47

Complex Math is Complex

x86 Mathematics

43 44

45 46

47 48

9

Add & Subtract

Spring 2024 Sacramento State - Cook - CSc 35 49

 The Add and Subtract
instructions take two
operands and store the result
in the first operand

 This is the same as the +=
and -= operators used in
Visual Basic .NET, C, C++,
Java, etc…

ADD target, value

Addition

Immediate, Register, Memory

Register, Memory

Spring 2024 Sacramento State - Cook - CSc 35 50

SUB target, value

Subtraction

Immediate, Register, Memory

Register, Memory

Spring 2024 Sacramento State - Cook - CSc 35 51

NEG register

Negate (2's complement)

Spring 2024 Sacramento State - Cook - CSc 35 52

MOV rax, 17

ADD rax, 2

Example: Simple Add

Move value into RAX

RAX += 2

Spring 2024 Sacramento State - Cook - CSc 35 53

x86 Multiplication

Complex Math is Complex

49 50

51 52

53 54

10

Multiplication & Division

Spring 2024 Sacramento State - Cook - CSc 35 55

 The x86 treats multiplication

quite differently than

add/subtract

 Why? Intel was designed as a

business processor and high-
precision math is paramount

Multiplication Review

Spring 2024 Sacramento State - Cook - CSc 35 56

 Remember: when two n bit
numbers are multiplied, result
will be 2n bits

 So…

• two 8-bit numbers 16-bit

• two 16-bit numbers 32-bit

• two 32-bit numbers 64-bit

• two 64-bit numbers 128-bit

 Intel stores the product into two registers

• RAX will contain the lower 8 bytes

• RDX will contain the upper 8 bytes

 This maintains the high-precision result

 Instruction inputs are strange

• first operand is must be stored in RAX

• second operand must be a register or memory

Multiplication on the x86

Spring 2024 Sacramento State - Cook - CSc 35 57

x86 Multiplication

IMUL register

First operand

RAX

RAX

Lower 8 bytes

RDX

Upper 8 bytes

Spring 2024 Sacramento State - Cook - CSc 35 58

IMUL operand

Multiply - Signed

Register or Memory only

Spring 2024 Sacramento State - Cook - CSc 35 59

MUL operand

Multiply - Unsigned

Register or Memory only

Spring 2024 Sacramento State - Cook - CSc 35 60

55 56

57 58

59 60

11

MOV rax, 1846 #First operand

MOV rbx, 42 #Need register for MUL

IMUL rbx #RAX gets low 8 bytes

#RDX gets high 8 bytes

Signed Multiply: 1846 by 42

Spring 2024 Sacramento State - Cook - CSc 35 61

Multiplication Tips

Spring 2024 Sacramento State - Cook - CSc 35 62

 Even though you are just

using RAX as input, both

RAX and RDX will change

 Be aware that you might lose

important data, and backup to
memory if needed

Additional x86 Multiply Instructions

Spring 2024 Sacramento State - Cook - CSc 35 63

 Over time, designers
requested a low-precision
version of multiplication

 Intel added "short" IMUL
instructions that store into a
single register

 Please Note: these do not
exist for MUL

IMUL target, value

IMUL (few more combos)

Spring 2024 Sacramento State - Cook - CSc 35 64

Immediate, Register, Memory

Register

MOV rax, 1846

IMUL rax, 42

Signed Multiply: 1846 by 42

This works, but could

cause an overflow

Spring 2024 Sacramento State - Cook - CSc 35 65

Extending Byte

Size

Converting from 8-bit to 16-bit and more

61 62

63 64

65 66

12

Extending Unsigned Integers

Spring 2024 Sacramento State - Cook - CSc 35 67

 Often in programs, data

needs to moved to a integer

with a larger number of bits

 For example, an 8-bit number

is moved to a 16-bit
representation

Extending Unsigned Integers

Spring 2024 Sacramento State - Cook - CSc 35 68

 For unsigned numbers is

fairly easy – just add zeros to

the left of the number

 This, naturally, is how our

number system works
anyway: 456 = 000456

Unsigned 13 Extended

0000 101100000000

0000 1011

Spring 2024 Sacramento State - Cook - CSc 35 69

 When the data is stored in a signed integer, the

conversion is a little more complex

 Simply adding zeroes to the left, will convert a
negative value to a positive one

 Each type of signed representation has its own set

of rules

Extending Signed Integers

Spring 2024 Sacramento State - Cook - CSc 35 70

2's Complement Incorrectly Done

-13

243

Spring 2024 Sacramento State - Cook - CSc 35 71

1111 110000000000

1111 1100

 In signed magnitude, the most-significant bit (msb)
stores the negative sign

 The new sign-bit needs to have this value

 Rules:

• copy the old sign-bit to the new sign-bit

• fill in the rest of the new bits with zeroes – including the
old sign bit

Sign Magnitude Extension

Spring 2024 Sacramento State - Cook - CSc 35 72

67 68

69 70

71 72

13

000000000

Sign Magnitude Extended: +77

001 1011

Spring 2024 Sacramento State - Cook - CSc 35 73

Sign Magnitude Extended: +77

Spring 2024 Sacramento State - Cook - CSc 35 74

000000000 001 1011

Sign Magnitude Extended: -77

Spring 2024 Sacramento State - Cook - CSc 35 75

000000001 001 1011

Sign Magnitude Extended: -77

Spring 2024 Sacramento State - Cook - CSc 35 76

000000001 001 1011

2's Complement Extension

Spring 2024 Sacramento State - Cook - CSc 35 77

 2's Complement is very simple
to convert to a larger
representation

 Remember that we inverted the
bits and added 1 to get a
negative value

 Rule: copy the old most-
significant bit to all the new bits

2's Complement Extended: +77

Spring 2024 Sacramento State - Cook - CSc 35 78

00000000 000 10111

73 74

75 76

77 78

14

2's Complement Extended: +77

Spring 2024 Sacramento State - Cook - CSc 35 79

00000000 000 10111

2's Complement Extended: -77

Spring 2024 Sacramento State - Cook - CSc 35 80

11111111 111 11000

2's Complement Extended: -77

Spring 2024 Sacramento State - Cook - CSc 35 81

11111111 111 11000

x86 Division

Complex Math is Complex

Division on the x86

Spring 2024 Sacramento State - Cook - CSc 35 83

 Division on the x86 is very
interesting

 Since multiplication stores into
to two registers, divide uses
these as the numerator

 Numerator is fixed as:

• RAX contains the lower 8 bytes

• RDX contains the upper 8 bytes

Division on the x86

Spring 2024 Sacramento State - Cook - CSc 35 84

 These two registers are also

used for the result

 The output contains:

• RAX will contain the quotient

(the whole number)

• RDX will contain the remainder

79 80

81 82

83 84

15

x86 Division

IDIV denominator

Lower 8 bytes

RAX

RAX

Quotient

RDX

Remainder

RDX

Upper 8 bytes

Spring 2024 Sacramento State - Cook - CSc 35 85

IDIV denominator

Divide - Signed

Register or Memory only

Spring 2024 Sacramento State - Cook - CSc 35 86

DIV denominator

Divide - Unsigned

Register or Memory only

Spring 2024 Sacramento State - Cook - CSc 35 87

 The numerator must be expanded to the

destination size (twice the original)

 Why? Multiplication doubles the number of digits;
division does the opposite

 This must be done before the division - otherwise

the result will be incorrect

Dividing Rules

Spring 2024 Sacramento State - Cook - CSc 35 88

On the Intel…

Spring 2024 Sacramento State - Cook - CSc 35 89

 You must setup RDX before
you divide

 For unsigned: store 0 into it

 For signed-division:

• RAX needs must be sign-
extended into RDX

• there are special instructions

Sign Extend Example

00000000

RDX

0010 1011

RAX

Spring 2024 Sacramento State - Cook - CSc 35 90

0010 1011

RAX

85 86

87 88

89 90

16

Sign Extend Example

00000000

RDX

0010 1011

RAX

Spring 2024 Sacramento State - Cook - CSc 35 91

0010 1011

RAX

Sign Extend Example

11111111

RDX

0011 1011

RAX

Spring 2024 Sacramento State - Cook - CSc 35 92

0011 1011

RAX

Sign Extend Example

RDX

0011 1011

RAX

Spring 2024 Sacramento State - Cook - CSc 35 93

0011 1011

RAX

11111111

CWD

CWD (16 bit): Extend AX → DX

Convert Word to Double

Spring 2024 Sacramento State - Cook - CSc 35 94

CDQ

CDQ (32 bit): Extend EAX → EDX

Convert Double to Quad

Spring 2024 Sacramento State - Cook - CSc 35 95

CQO

CQO (64 bit): Extend RAX → RDX

Convert Quad to Oct

Use this one!

Spring 2024 Sacramento State - Cook - CSc 35 96

91 92

93 94

95 96

17

MOV rax, -1846 #RAX is the dividend

MOV rbx, 42 #Divisor

CQO #Sign extend to RDX

IDIV rbx #RAX gets quotient

#RDX gets remainder

Divide 64-bit: -1846 by 42

Spring 2024 Sacramento State - Cook - CSc 35 97

It's all math

How Compare

Works

Behind the scenes…

Spring 2024 Sacramento State - Cook - CSc 35 99

 The second argument is

subtracted from the first

 The result of this computation

is used to determine how the

operands compare

 This subtraction result is

discarded

 Why subtract the operands?

 The result can tell you which is larger

 For example: A and B are both positive…

• A – B positive number A was larger

• A – B negative number B was larger

• A – B zero both numbers are equal

But… why subtract?

Spring 2024 Sacramento State - Cook - CSc 35 100

CMP arg1 , arg2

Instruction: Compare

Immediate, Register, Memory

Register, Memory

Spring 2024 Sacramento State - Cook - CSc 35 101

Flags

Spring 2024 Sacramento State - Cook - CSc 35 102

 A flag is a Boolean value that

indicates the result of an

action

 These are set by various

actions such as calculations,
comparisons, etc…

97 98

99 100

101 102

18

Flags

Spring 2024 Sacramento State - Cook - CSc 35 103

 Flags are typically stored as

individual bits in the Status

Register

 You can't change the register
directly, but numerous
instructions use it for control

and logic

Zero Flag (ZF)

Spring 2024 Sacramento State - Cook - CSc 35 104

 True if the last computation

resulted in zero (all bits are 0)

 For compare, the zero flag

indicates the two operands

are equal

 Used by quite a few

conditional jump statements

Sign Flag (SF)

Spring 2024 Sacramento State - Cook - CSc 35 105

 True of the most significant

bit of the result is 1

 This would indicate a

negative 2's complement

number

 Meaningless if the operands

are interpreted as unsigned

Carry Flag (CF)

Spring 2024 Sacramento State - Cook - CSc 35 106

 True if a 1 is "borrowed" when
subtraction is performed

 …or a 1 is "carried" from addition

 For unsigned numbers, it
indicates:

• exceeded the size of the register on
addition

• or an underflow (too small value) on
subtraction

Overflow Flag (OF)

Spring 2024 Sacramento State - Cook - CSc 35 107

 Also known as "signed carry flag"

 True if the sign bit changed when it
shouldn't have

 For example:

• (negative – positive) should be negative

• a positive result will set the flag

 For signed numbers, it indicates:

• exceeded the register size

• i.e. the value was too big/small

When TrueDescriptionName

If a bit was "carried" or "borrowed" during math.Carry FlagCF

All the bits in the result are zero.Zero FlagZF

If the most significant bit is 1.Sign FlagSF

If the sign-bit changed when it shouldn’t have.Overflow FlagOF

Spring 2024 Sacramento State - Cook - CSc 35 108

x86 Flags Used by Compare

103 104

105 106

107 108

19

-68 vs. 30 (if interpreted as signed)

188 vs. 30 (if interpreted as unsigned)

-

011 1101 0

1000 0111

1101 0011

0

ZF

0OF

SF 1

0CF 0

Spring 2024 Sacramento State - Cook - CSc 35 109

When TrueDescriptionJump

ZF = 1Equal JE

ZF = 0Not equalJNE

Spring 2024 Sacramento State - Cook - CSc 35 110

Jump on Equality

When TrueDescriptionJump

SF = OF, ZF = 0 Jump Greater thanJG

SF = OFJump Greater than or EqualJGE

SF ≠ OF, ZF = 0Jump Less thanJL

SF ≠ OFJump Less than or EqualJLE

Spring 2024 Sacramento State - Cook - CSc 35 111

Signed Jump Instructions

When TrueDescriptionJump

CF = 0, ZF = 0 Jump AboveJA

CF = 0Jump Above or EqualJAE

CF = 1, ZF = 0Jump BelowJB

CF = 1Jump Below or EqualJBE

Spring 2024 Sacramento State - Cook - CSc 35 112

Unsigned Jumps

_start:
mov rax, 42
cmp rax, 13
jae Bigger
...

Bigger:
add rax, 5

Unsigned Conditional Jump Example

rax >= 13?

Spring 2024 Sacramento State - Cook - CSc 35 113

109 110

111 112

113

