

1

Adding Binary Integers

- Computer's add binary numbers the same way that we do with decimal
- Columns are aligned, added, and "1's" are carried to the next column
- In computer processors, this component is called an adder
 -

3


5


2

## Adding Base 10 Numbers



4


6

Negative Binary Numbers

- When we write a negative number, we generally use a "-" as a prefix character
- However, binary numbers can only store ones and zeros


7


## Signed Magnitude

- One approach is to use the most significant bit (msb) to represent the negative sign
- If positive, this bit will be a zero
- If negative, this bit will be a 1
- This gives a byte a range of -127 to 127 rather than 0 to 255

9

Signed Magnitude: 13 and -13


## Negative Binary Numbers

- So, how we store a negative a number?
- When a number can represent both positive and negative numbers, it is called a signed integer
- Otherwise, it is unsigned


8

## Signed Magnitude



10

## Signed Magnitude Drawback \#1

- When two numbers are added, the system needs to check and sign bits and act accordingly
- For example:
- if both numbers are positive, add values
- if one is negative subtract it from the other
- etc...
- There are also rules for subtracting

Signed Magnitude Drawback \#2

- Also, signed magnitude also can store a positive and negative version of zero
- Yes, there are two zeroes!
- Imagine having to write Java code like...

$$
\text { if }(x==+0| | x==-0)
$$

13

1's Complement

- Rather than use a sign bit, the value can be made negative by inverting each bit
- each 1 becomes a 0
- each 0 becomes a 1
" Result is a "complement" of the original
- This is logically the same as subtracting the number from 0

15

1's Complement: 13 and -13

## Positive



Negative


Oh noes! Two zeros?


14

## Advantages / Disadvantages

- Advantages over signed magnitude
- very simple rules for adding/subtracting
- numbers are simply added:
$5-3$ is the same as $5+-3$
- Disadvantages
- positive and negative zeros still exist
- so, it's not a perfect solution

16

## 1's Complement Has Two Zeros



18

## 2's Complement

- Practically all computers use 2's Complement
- Similar to 1's complement, but after the number is inverted, 1 is added to the result
- Logically the same as:
- subtracting the number from $2^{\text {n }}$
- where $n$ is the total number of bits in the integer
$\qquad$
19

2's Complement: 13 and -13


21

## Adding 2's Complement



23

## 2's Complement Advantages

- Since negatives are subtracted from $2^{\text {n }}$
- they can simply be added
- the extra carry 1 (if it exists) is discarded
- this simplifies the hardware considerably since the processor only has to add
- The +1 for negative numbers...
- makes it so there is only one zero
- values range from -128 to 127

20

## Just One Zero!



-1


22

## Unsigned or Signed?

- In reality, processors don't know (or care) if a number if unsigned or signed
- The hardware works the same either way
- It's your responsibility to keep
 track if it's signed/unsigned

24

## It's Your Responsibility

- In many cases, you must use the correct instruction - based on whether you are treating the data as signed or unsigned
- With great programming power comes great responsibility

25

## Relative Addressing

- In relative addressing, a value is added to a instruction pointer (e.g. program counter)
- This allows access a fixed number of bytes up or down from the instruction pointer



## Relative Addressing Advantages

- The instruction can just store the difference (in bytes) from the current instruction address
- It takes less storage than a full 64-bit address
- It also allows a program to be stored anywhere in memory - and it will still work!


26

## Relative Addressing

- Often used in conditional jump statements
- jumps are often short - not a large number of instructions
- so, the instruction only stores the value to add to the program counter
- practically all processors us this approach
- Also used to access local data - load/store

28

## Herky Compare Register, Register



30


31


33

## Multiplying Binary Numbers

- Many processors today provide complex mathematical instructions
- However, the processor only needs to know how to add
- Historically, multiplication was performed with successive additions


Herky Call Unconditional Jump


32


34

## Multiplying Scenario

- Let's say we have two variables: A and B
- Both contain integers that we need to multiply
- Our processor can only add (and subtract using 2's complement)
- How do we multiply the values?


37

Multiplying: The Bad Way

- If $A$ or $B$ is large, then it could take a long time
- This is incredibly inefficient
- Also, given that A and B could contain drastically different values - the number of iterations would vary
- Required time is not constant

39


41

Multiplying: The Bad Way


38

Multiplying: The Best Way


40


42


43


45

## Multiplication Doubles the Bit-Count

- So, how do we store the result?
- It is often too large to fit into any single existing register
- Processors can...
- fit the result in the original bit-size (and raise an overflow if it does not fit)
- ...or store the new double-sized number

Unsigned Integer: $13 \times 10$


44

## Multiplication Doubles the Bit-Count

- When two numbers are multiplied, the product will have twice the number of digits
- Examples:
- 8 -bit $\times 8$-bit $\rightarrow 16$-bit
- 16 -bit $\times 16$-bit $\rightarrow 32$-bit
- 32-bit $\times 32$-bit $\rightarrow 64$-bit
- 64-bit $\times 64$-bit $\rightarrow 128$-bit

46


48


49


51


53


50

Negate (2's complement)


52


54

Multiplication \& Division

- The x86 treats multiplication quite differently than add/subtract
- Why? Intel was designed as a business processor and highprecision math is paramount


55

Multiplication on the x86

- Intel stores the product into two registers
- RAX will contain the lower 8 bytes
- RDX will contain the upper 8 bytes
- This maintains the high-precision result
- Instruction inputs are strange
- first operand is must be stored in RAX
- second operand must be a register or memory

57

Multiply - Signed


59

## Multiplication Review

- Remember: when two $n$ bit numbers are multiplied, result will be $2 n$ bits
- So...
- two 8-bit numbers $\rightarrow$ 16-bit
- two 16-bit numbers $\rightarrow$ 32-bit
- two 32-bit numbers $\rightarrow$ 64-bit
- two 64-bit numbers $\rightarrow$ 128-bit


56


58

## Multiply - Unsigned



60


61

Additional x86 Multiply Instructions

- Over time, designers requested a low-precision version of multiplication
- Intel added "short" IMUL instructions that store into a single register
- Please Note: these do not exist for MUL


63

Signed Multiply: 1846 by 42


65

Multiplication Tips

- Even though you are just using RAX as input, both RAX and RDX will change
- Be aware that you might lose important data, and backup to memory if needed


62

IMUL (few more combos)


64


66

Extending Unsigned Integers

- Often in programs, data needs to moved to a integer with a larger number of bits
- For example, an 8-bit number is moved to a 16-bit representation


67

## Unsigned 13 Extended



69

## 2's Complement Incorrectly Done



71

## Extending Unsigned Integers

- For unsigned numbers is fairly easy - just add zeros to the left of the number
- This, naturally, is how our number system works anyway: $456=000456$


68

## Extending Signed Integers

- When the data is stored in a signed integer, the conversion is a little more complex
- Simply adding zeroes to the left, will convert a negative value to a positive one
- Each type of signed representation has its own set of rules

70

## Sign Magnitude Extension

- In signed magnitude, the most-significant bit (msb) stores the negative sign
- The new sign-bit needs to have this value
- Rules:
- copy the old sign-bit to the new sign-bit
- fill in the rest of the new bits with zeroes - including the old sign bit

72

Sign Magnitude Extended: +77


73

Sign Magnitude Extended: -77

75

## 2's Complement Extension

- 2's Complement is very simple to convert to a larger representation
- Remember that we inverted the bits and added 1 to get a negative value
- Rule: copy the old mostsignificant bit to all the new bits

Sign Magnitude Extended: +77

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 0 & 1 & 0 & 0 & 1 & 1 & 0 & 1 \\
\hline
\end{array}
$$

74

Sign Magnitude Extended: -77

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 \\
\hline
\end{array}
$$

76

2's Complement Extended: +77


78


79


81

## Division on the $\times 86$

- Division on the $x 86$ is very interesting
- Since multiplication stores into to two registers, divide uses these as the numerator
- Numerator is fixed as:
- RAX contains the lower 8 bytes
- RDX contains the upper 8 bytes


2's Complement Extended: -77


Socermmen san: caot. cse 35 $\infty$ 80


82

## Division on the x86

- These two registers are also used for the result
- The output contains:
- RAX will contain the quotient (the whole number)
- RDX will contain the remainder



85

## Divide - Unsigned



87

On the Intel...

- You must setup RDX before you divide
- For unsigned: store 0 into it
- For signed-division:
- RAX needs must be signextended into RDX
- there are special instructions


Divide - Signed


86

## Dividing Rules

- The numerator must be expanded to the destination size (twice the original)
- Why? Multiplication doubles the number of digits; division does the opposite
- This must be done before the division - otherwise the result will be incorrect

88


90

Sign Extend Example


91

Sign Extend Example


93

95


Sign Extend Example


92

CWD (16 bit): Extend AX $\rightarrow$ DX


94

CQO (64 bit): Extend RAX $\rightarrow$ RDX


96


97


99

Instruction: Compare


101


98

## But... why subtract?

- Why subtract the operands?
- The result can tell you which is larger
- For example: $A$ and $B$ are both positive...
- $\mathrm{A}-\mathrm{B} \rightarrow$ positive number $\rightarrow \mathrm{A}$ was larger
- $A-B \rightarrow$ negative number $\rightarrow B$ was larger
- A - B $\rightarrow$ zero $\rightarrow$ both numbers are equal

100

## Flags

- A flag is a Boolean value that indicates the result of an action
- These are set by various actions such as calculations, comparisons, etc...


102

Flags

## Zero Flag (ZF)

- True if the last computation resulted in zero (all bits are 0)
- For compare, the zero flag indicates the two operands are equal
- Used by quite a few conditional jump statements

104

## Sign Flag (SF)

- True of the most significant bit of the result is 1
- This would indicate a negative 2's complement number
- Meaningless if the operands are interpreted as unsigned


105
106

## Overflow Flag (OF)

- Also known as "signed carry flag"
- True if the sign bit changed when it shouldn't have
- For example:
- (negative - positive) should be negative
- a positive result will set the flag
- For signed numbers, it indicates:
- exceeded the register size
- i.e. the value was too big/small

x86 Flags Used by Compare

| Name | Descripion | When True |
| :---: | :--- | :--- |
| $\mathbf{C F}$ | Carry Flag | If a bit was "carried" or "borrowed" during math. |
| ZF | Zero Flag | All the bits in the result are zero. |
| SF | Sign Flag | If the most significant bit is 1. |
| OF | Overflow Flag | If the sign-bit changed when it shouldn't have. |



109

Signed Jump Instructions

| Jump | Description | When True |
| :---: | :--- | :--- |
| JG | Jump Greater than | $\mathrm{SF}=\mathrm{OF}, \mathrm{ZF}=0$ |
| JGE | Jump Greater than or Equal | $\mathrm{SF}=\mathrm{OF}$ |
| JL | Jump Less than | $\mathrm{SF} \neq \mathrm{OF}, \mathrm{ZF}=0$ |
| JLE | Jump Less than or Equal | $\mathrm{SF} \neq \mathrm{OF}$ |

111

Jump on Equality

| Jump | Description | When True |
| :---: | :--- | :--- |
| JE | Equal | $\mathrm{ZF}=1$ |
| JNE | Not equal | $\mathrm{ZF}=0$ |

Unsigned Jumps

| Jump | Description | When True |
| :---: | :--- | :--- |
| JA | Jump Above | $C F=0, Z F=0$ |
| JAE | Jump Above or Equal | $C F=0$ |
| JB | Jump Below | $C F=1, Z F=0$ |
| JBE | Jump Below or Equal | $C F=1$ |

112

Unsigned Conditional Jump Example


113

