
1

Subroutines &

Operating

Systems

Part 8

The System

Stack

Pile of… Data

 The processor maintains a

stack in memory

 It allows subroutines

• analogous to the "functions"

you use in Java and other third-

generation languages

• but, much more simple

The System Stack

Spring 2024 Sacramento State - Cook - CSc 35 3

 Page-visited "back button"

history in a web browser

 Undo sequence in a text
editor

 Deck of cards in Windows

Solitaire

Examples of Stacks

4
Spring 2024 Sacramento State - Cook - CSc 35 4

Implementing in Memory

 On a processor, the stack stores integers

• size of the integer the bit-size of the system

• 64-bit system  64-bit integer

 Stacks is stored in memory

• A fixed location pointer (S0) defines the bottom of the stack

• A stack pointer (SP) gives the location of the top of the stack

Spring 2024 Sacramento State - Cook - CSc 35 5

Approaches

 Growing upwards

• Bottom Pointer (S0) is the lowest address in the stack buffer

• stack grows towards higher addresses

 Grow downwards

• Bottom Pointer (S0) is the highest address in the stack buffer

• stack grows towards lower addresses

Spring 2024 Sacramento State - Cook - CSc 35 6

1 2

3 4

5 6

2

Size of the Stack

 As an abstract data structure…

• stacks are assumed to be infinitely deep

• so, an arbitrary amount of data can be stored

 However…

• stacks are implemented using memory buffers

• which are finite in size

 If the data exceeds the allocated space, a stack
overflow error occurs

Spring 2024 Sacramento State - Cook - CSc 35 7

Subroutine

Call Basics

Organizing Your Program

 The stack is essential for

subroutines to work

 How?

• used to save the return

addresses for call instructions

• backup and restore registers

• pass data between subroutines

Subroutine Call

Spring 2024 Sacramento State - Cook - CSc 35 9

1. Processor pushes the instruction pointer (IP) – an
address – on the stack

2. IP is set to the address of the subroutine

3. Subroutine executes and ends with a "return"
instruction

4. Processor pops & restores the original IP

5. Execution continues after the initial call
Spring 2024 Sacramento State - Cook - CSc 35 10

When you call a subroutine…

Nesting is Possible

Spring 2024 Sacramento State - Cook - CSc 35 11

 Subroutines can call other
subroutines

 f() calls g()which then
calls h(), etc…

 The stack stores the return
addresses of the callers

 Just like the "history button"
in your web browser, you can
store many return addresses

Stack

return address in f()

return address in g()

return address in h()

Nesting is Possible

Spring 2024 Sacramento State - Cook - CSc 35 12

 Each time a subroutine
completes, the processor
pops the top of the stack

 …then returns to the caller

 This allows normal
function calls and
recursion (a powerful tool)

Stack

return address in f()

return address in g()

return address in h()

7 8

9 10

11 12

3

x64 Subroutines

Organizing Your Programs … with Intel

Instruction: Call

Spring 2024 Sacramento State - Cook - CSc 35 14

 The Call Instruction transfers

control to a subroutine

 Other processors call it

different names such as JSR

(Jump Subroutine)

 The stack is used to save the

current IP

CALL address

Instruction: Call

Usually, a label

(which is an address)

Spring 2024 Sacramento State - Cook - CSc 35 15

Instruction: Return

 The Return Instruction is used mark the end of

subroutine

 When the instruction is executed…

• the old instruction pointer is read from the system stack

• the current instruction pointer is updated – restoring

execution after the initial call

Spring 2024 Sacramento State - Cook - CSc 35 16

Instruction: Return

 Do not forget this!

 If you do…

• execution will simply continue, in memory, until a return

instruction is encountered

• often is can run past the end of your program

• …and run data!

Spring 2024 Sacramento State - Cook - CSc 35 17

RET

Instruction: Return

No arguments!

Spring 2024 Sacramento State - Cook - CSc 35 18

13 14

15 16

17 18

4

_start:

mov rcx, 4

mov rbx, 12

call AddIt

add rbx, 1

...

AddIt:

add rbx, rcx

ret

Subroutine Example

Spring 2024 Sacramento State - Cook - CSc 35 19

Operating

Systems

The master software

What is an operating system?

Spring 2024 Sacramento State - Cook - CSc 35 21

 The operating system is
simply a series of programs

 These programs, however,
run with special privileges
which are needed by the OS

 Processors support two
modes for executing
programs

Execution Modes

Spring 2024 Sacramento State - Cook - CSc 35 22

 Privileged (supervisor) mode

• can run special instructions

• can talk to all the hardware

• etc…

 User mode

• can only execute certain
instructions

• can't talk to all the hardware

 Programs (and hardware)

often need to talk to the

operating system

 Examples:

• software needs talk to the OS

• USB port notifies the OS that a

device was plugged in

Vector Tables

Spring 2024 Sacramento State - Cook - CSc 35 23

 But how does this happen?

 The processor can be
interrupted – alerted – that

something must be handled

 It then runs a special program
that handles the event

Vector Tables

Spring 2024 Sacramento State - Cook - CSc 35 24

19 20

21 22

23 24

5

 During an interrupt, the
device sends the processor
an interrupt number

 The processor looks up the
number in the vector table

 Table contains the address of
Interrupt Service Routine
(ISR) to execute

Vector Table

Spring 2024 Sacramento State - Cook - CSc 35 25

How It Works

Spring 2024 Sacramento State - Cook - CSc 35 26

Vector Table

AddressInterrupt
number

Memory

Routine

Device

0

1

2

3

4

5

Address

Address

Address

Address

Address

1. Backup the register file

2. Backups the instruction pointer

3. Executes the ISR

4. Restores the register file

5. Restores the Instruction Pointer

The Processor Actions

Spring 2024 Sacramento State - Cook - CSc 35 27

 All these Interrupt Service

Routines belong to the kernal

– the core of the operating
system

 Vast majority of the operating
system is hidden from the

end user

The Kernal

Spring 2024 Sacramento State - Cook - CSc 35 28

Interact with

Applications

How do WE talk to the OS

 Software also needs to talk to
the operating system

 For example:

• draw a button

• print a document

• close this program

• etc…

Interact with Applications

Spring 2024 Sacramento State - Cook - CSc 35 30

25 26

27 28

29 30

6

 Software can interrupt itself

with a specific number

 This interrupt is designated

specifically for software

 The operating system then

handles the software's

request

Interact with Applications

Spring 2024 Sacramento State - Cook - CSc 35 31

 Programs "talk" to the OS using Application
Program Interface (API)

 Application  Operating System  IO

 Benefits:

• makes applications faster and smaller

• also makes the system more secure since apps do not
directly talk to IO

Application Program Interface

Spring 2024 Sacramento State - Cook - CSc 35 32

SYSCALL

Instruction: syscall (64-bit)

Calls interrupt

number reserved

for programs

needing attention

Spring 2024 Sacramento State - Cook - CSc 35 33

Subroutine vs. Interrupt

Executes code Executes code

Subroutine Interrupt

Called by the application Executed by the processor

Part of the application Handles events for the OS

Returns when complete Returns when complete

Spring 2024 Sacramento State - Cook - CSc 35 34

Linux System

Calls

How software and hardware "talk"

 Linux, like other operating

systems communicate with

applications using interrupts

 Applications do not know
where (in memory) to contact
the kernal – so they ask the

processor to do it

Interrupts on the Linux

Spring 2024 Sacramento State - Cook - CSc 35 36

31 32

33 34

35 36

7

1. Fill the registers

2. Interrupt using syscall
(or INT 0x80 if on 32-bit)

3. Any results will be stored in
the registers

How It Works

Spring 2024 Sacramento State - Cook - CSc 35 37

 The rax register must contain

the system call number

 This number indicates what

you asking the OS to do

 There are only 329 total calls

in the entire 64-bit UNIX

operating system!

How to Call Linux – 64 bit

Spring 2024 Sacramento State - Cook - CSc 35 38

 Different registers are used to

hold data

 The order is also quite odd:

rdi, rsi, rdx, r10, r8

How to Call Linux – 64 bit

Spring 2024 Sacramento State - Cook - CSc 35 39

 Linux only has 1 write and 1
read system call

 The location, number of bytes,
and device only change
"write x many bytes from
address y to device z"

 So, writing to the screen, a file,
a port, etc…use the same call!

Kernals are Simple!

Spring 2024 Sacramento State - Cook - CSc 35 40

rdxrsirdiraxSystem Call

max bytesaddressfile descriptor0read

countaddressfile descriptor1write

modeflagsaddress2open

file descriptor3 close

39get pid

error code60exit

Spring 2024 Sacramento State - Cook - CSc 35 41

Some Linux 64 Calls

mov rax, 1

mov rdi, 1

lea rsi, address

mov rdx, length

syscall

Linux 64: Sys Write

Linux command for WRITE

Call Linux

1 = Screen

Spring 2024 Sacramento State - Cook - CSc 35 42

37 38

39 40

41 42

8

mov rax, 0

mov rdi, 0

lea rsi, address

mov rdx, maxBytes

syscall

Linux 64: Sys Read

Linux command for READ

Call Linux

0 = Keyboard

Maximum number

of bytes to read

Spring 2024 Sacramento State - Cook - CSc 35 43

SacState:

.ascii "Stinger's up!\n" #\n counts as 1 character

...

_start:

mov rax, 1 #1 = write

mov rdi, 1 #1 = screen

lea rsi, SacState

mov rdx, 14 #14 bytes

syscall

Write Example

Spring 2024 Sacramento State - Cook - CSc 35 44

Saving Registers

& Lost Data

Avoiding horrible side-effects

 Each subroutine will use the
registers as it needs

 So, when a sub is called, it may
modify the caller's registers

 Some processors have few
registers – so its very likely

 This can lead to hard-to-fix bugs
if caution is not used – e.g. loop
counter gets changed

Saving Registers & Lost Data

Spring 2024 Sacramento State - Cook - CSc 35 46

Two Solutions

 Caller saves values

• caller saves all their registers to memory before making the
subroutine call

• after, it restores the values before continuing

• not recursion friendly – it pushes all of them!

 Subroutine saves the values

• push registers (it will change) onto the stack

• before it returns, it pops (and restores) the old values off the
stack

Spring 2024 Sacramento State - Cook - CSc 35 47

DoSomething:

push rax

push rbx

push rcx

...

pop rcx

pop rbx

pop rax

ret

Saving Registers… How nice! :-)

Save registers

Restore them.

Note the reverse order

Your code

Spring 2024 Sacramento State - Cook - CSc 35 48

43 44

45 46

47 48

